Optimal. Leaf size=28 \[ \left (3+e^{3+\frac {5}{9 x}}\right ) x \left (2 x-\frac {1}{2} x (4+\log (5))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 30, normalized size of antiderivative = 1.07, number of steps used = 10, number of rules used = 6, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {12, 2225, 2226, 2206, 2210, 2214} \begin {gather*} -\frac {1}{2} e^{\frac {5}{9 x}+3} x^2 \log (5)-\frac {3}{2} x^2 \log (5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2206
Rule 2210
Rule 2214
Rule 2225
Rule 2226
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{18} \int \left (e^{\frac {5+27 x}{9 x}} (5-18 x) \log (5)-54 x \log (5)\right ) \, dx\\ &=-\frac {3}{2} x^2 \log (5)+\frac {1}{18} \log (5) \int e^{\frac {5+27 x}{9 x}} (5-18 x) \, dx\\ &=-\frac {3}{2} x^2 \log (5)+\frac {1}{18} \log (5) \int e^{3+\frac {5}{9 x}} (5-18 x) \, dx\\ &=-\frac {3}{2} x^2 \log (5)+\frac {1}{18} \log (5) \int \left (5 e^{3+\frac {5}{9 x}}-18 e^{3+\frac {5}{9 x}} x\right ) \, dx\\ &=-\frac {3}{2} x^2 \log (5)+\frac {1}{18} (5 \log (5)) \int e^{3+\frac {5}{9 x}} \, dx-\log (5) \int e^{3+\frac {5}{9 x}} x \, dx\\ &=\frac {5}{18} e^{3+\frac {5}{9 x}} x \log (5)-\frac {3}{2} x^2 \log (5)-\frac {1}{2} e^{3+\frac {5}{9 x}} x^2 \log (5)+\frac {1}{162} (25 \log (5)) \int \frac {e^{3+\frac {5}{9 x}}}{x} \, dx-\frac {1}{18} (5 \log (5)) \int e^{3+\frac {5}{9 x}} \, dx\\ &=-\frac {3}{2} x^2 \log (5)-\frac {1}{2} e^{3+\frac {5}{9 x}} x^2 \log (5)-\frac {25}{162} e^3 \text {Ei}\left (\frac {5}{9 x}\right ) \log (5)-\frac {1}{162} (25 \log (5)) \int \frac {e^{3+\frac {5}{9 x}}}{x} \, dx\\ &=-\frac {3}{2} x^2 \log (5)-\frac {1}{2} e^{3+\frac {5}{9 x}} x^2 \log (5)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 28, normalized size = 1.00 \begin {gather*} -\frac {1}{18} \left (27 x^2+9 e^{3+\frac {5}{9 x}} x^2\right ) \log (5) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 26, normalized size = 0.93 \begin {gather*} -\frac {1}{2} \, x^{2} e^{\left (\frac {27 \, x + 5}{9 \, x}\right )} \log \relax (5) - \frac {3}{2} \, x^{2} \log \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 48, normalized size = 1.71 \begin {gather*} -\frac {3}{2} \, x^{2} \log \relax (5) - \frac {25 \, e^{\left (\frac {27 \, x + 5}{9 \, x}\right )} \log \relax (5)}{2 \, {\left (\frac {{\left (27 \, x + 5\right )}^{2}}{x^{2}} - \frac {54 \, {\left (27 \, x + 5\right )}}{x} + 729\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 24, normalized size = 0.86
method | result | size |
derivativedivides | \(-\frac {3 x^{2} \ln \relax (5)}{2}-\frac {x^{2} \ln \relax (5) {\mathrm e}^{\frac {5}{9 x}+3}}{2}\) | \(24\) |
default | \(-\frac {3 x^{2} \ln \relax (5)}{2}-\frac {x^{2} \ln \relax (5) {\mathrm e}^{\frac {5}{9 x}+3}}{2}\) | \(24\) |
norman | \(-\frac {3 x^{2} \ln \relax (5)}{2}-\frac {x^{2} \ln \relax (5) {\mathrm e}^{\frac {27 x +5}{9 x}}}{2}\) | \(27\) |
risch | \(-\frac {3 x^{2} \ln \relax (5)}{2}-\frac {x^{2} \ln \relax (5) {\mathrm e}^{\frac {27 x +5}{9 x}}}{2}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 34, normalized size = 1.21 \begin {gather*} -\frac {3}{2} \, x^{2} \log \relax (5) - \frac {25}{162} \, {\left (e^{3} \Gamma \left (-1, -\frac {5}{9 \, x}\right ) + 2 \, e^{3} \Gamma \left (-2, -\frac {5}{9 \, x}\right )\right )} \log \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.97, size = 17, normalized size = 0.61 \begin {gather*} -\frac {x^2\,\ln \relax (5)\,\left ({\mathrm {e}}^{\frac {5}{9\,x}+3}+3\right )}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 29, normalized size = 1.04 \begin {gather*} - \frac {x^{2} e^{\frac {3 x + \frac {5}{9}}{x}} \log {\relax (5 )}}{2} - \frac {3 x^{2} \log {\relax (5 )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________