Optimal. Leaf size=29 \[ \frac {e^x \left (3+\frac {5}{x}\right )}{4+e^x-x+\log (x)+\log \left (81 x^4\right )} \]
________________________________________________________________________________________
Rubi [F] time = 13.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 e^{2 x}+e^x \left (-45+15 x+10 x^2-3 x^3\right )+e^x \left (-5+5 x+3 x^2\right ) \log (x)+e^x \left (-5+5 x+3 x^2\right ) \log \left (81 x^4\right )}{16 x^2+e^{2 x} x^2-8 x^3+x^4+e^x \left (8 x^2-2 x^3\right )+\left (8 x^2+2 e^x x^2-2 x^3\right ) \log (x)+x^2 \log ^2(x)+\left (8 x^2+2 e^x x^2-2 x^3+2 x^2 \log (x)\right ) \log \left (81 x^4\right )+x^2 \log ^2\left (81 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (-45-5 e^x+15 x+10 x^2-3 x^3-\left (5-5 x-3 x^2\right ) \log (x)-\left (5-5 x-3 x^2\right ) \log \left (81 x^4\right )\right )}{x^2 \left (4+e^x-x+\log (x)+\log \left (81 x^4\right )\right )^2} \, dx\\ &=\int \left (\frac {5 e^x}{x^2 \left (-4-e^x+x-\log (81 x)-\log \left (x^4\right )\right )}-\frac {e^x (5+3 x) \left (5-5 x+x^2-x \log (x)-x \log \left (81 x^4\right )\right )}{x^2 \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2}\right ) \, dx\\ &=5 \int \frac {e^x}{x^2 \left (-4-e^x+x-\log (81 x)-\log \left (x^4\right )\right )} \, dx-\int \frac {e^x (5+3 x) \left (5-5 x+x^2-x \log (x)-x \log \left (81 x^4\right )\right )}{x^2 \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2} \, dx\\ &=5 \int \frac {e^x}{x^2 \left (-4-e^x+x-\log (81 x)-\log \left (x^4\right )\right )} \, dx-\int \left (\frac {5 e^x \left (5-5 x+x^2-x \log (x)-x \log \left (81 x^4\right )\right )}{x^2 \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2}+\frac {3 e^x \left (5-5 x+x^2-x \log (x)-x \log \left (81 x^4\right )\right )}{x \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2}\right ) \, dx\\ &=-\left (3 \int \frac {e^x \left (5-5 x+x^2-x \log (x)-x \log \left (81 x^4\right )\right )}{x \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2} \, dx\right )+5 \int \frac {e^x}{x^2 \left (-4-e^x+x-\log (81 x)-\log \left (x^4\right )\right )} \, dx-5 \int \frac {e^x \left (5-5 x+x^2-x \log (x)-x \log \left (81 x^4\right )\right )}{x^2 \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2} \, dx\\ &=-\left (3 \int \left (\frac {5 e^x}{x \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2}+\frac {e^x x}{\left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2}-\frac {5 e^x}{\left (4+e^x-x+\log (x)+\log \left (81 x^4\right )\right )^2}-\frac {e^x \log (x)}{\left (4+e^x-x+\log (x)+\log \left (81 x^4\right )\right )^2}-\frac {e^x \log \left (81 x^4\right )}{\left (4+e^x-x+\log (x)+\log \left (81 x^4\right )\right )^2}\right ) \, dx\right )+5 \int \frac {e^x}{x^2 \left (-4-e^x+x-\log (81 x)-\log \left (x^4\right )\right )} \, dx-5 \int \left (\frac {5 e^x}{x^2 \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2}-\frac {5 e^x}{x \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2}-\frac {e^x \log (x)}{x \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2}-\frac {e^x \log \left (81 x^4\right )}{x \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2}+\frac {e^x}{\left (4+e^x-x+\log (x)+\log \left (81 x^4\right )\right )^2}\right ) \, dx\\ &=-\left (3 \int \frac {e^x x}{\left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2} \, dx\right )+3 \int \frac {e^x \log (x)}{\left (4+e^x-x+\log (x)+\log \left (81 x^4\right )\right )^2} \, dx+3 \int \frac {e^x \log \left (81 x^4\right )}{\left (4+e^x-x+\log (x)+\log \left (81 x^4\right )\right )^2} \, dx+5 \int \frac {e^x}{x^2 \left (-4-e^x+x-\log (81 x)-\log \left (x^4\right )\right )} \, dx+5 \int \frac {e^x \log (x)}{x \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2} \, dx+5 \int \frac {e^x \log \left (81 x^4\right )}{x \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2} \, dx-5 \int \frac {e^x}{\left (4+e^x-x+\log (x)+\log \left (81 x^4\right )\right )^2} \, dx-15 \int \frac {e^x}{x \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2} \, dx+15 \int \frac {e^x}{\left (4+e^x-x+\log (x)+\log \left (81 x^4\right )\right )^2} \, dx-25 \int \frac {e^x}{x^2 \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2} \, dx+25 \int \frac {e^x}{x \left (-4-e^x+x-\log (x)-\log \left (81 x^4\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.08, size = 30, normalized size = 1.03 \begin {gather*} \frac {e^x (5+3 x)}{x \left (4+e^x-x+\log (x)+\log \left (81 x^4\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 33, normalized size = 1.14 \begin {gather*} -\frac {{\left (3 \, x + 5\right )} e^{x}}{x^{2} - x e^{x} - 4 \, x \log \relax (3) - 5 \, x \log \relax (x) - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 36, normalized size = 1.24 \begin {gather*} -\frac {3 \, x e^{x} + 5 \, e^{x}}{x^{2} - x e^{x} - 4 \, x \log \relax (3) - 5 \, x \log \relax (x) - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.30, size = 229, normalized size = 7.90
method | result | size |
risch | \(-\frac {2 \left (3 x +5\right ) {\mathrm e}^{x}}{x \left (-i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )^{2}+i \pi \mathrm {csgn}\left (i x^{3}\right )^{3}+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )+i \pi \mathrm {csgn}\left (i x^{4}\right )^{3}+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x^{3}\right )-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{4}\right )^{2}-2 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )+i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}+i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-i \pi \,\mathrm {csgn}\left (i x^{3}\right ) \mathrm {csgn}\left (i x^{4}\right )^{2}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{3}\right )^{2}-8-8 \ln \relax (3)+2 x -2 \,{\mathrm e}^{x}-10 \ln \relax (x )\right )}\) | \(229\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 47, normalized size = 1.62 \begin {gather*} -\frac {3 \, x^{2} - 12 \, x {\left (\log \relax (3) + 1\right )} - 15 \, x \log \relax (x) + 5 \, e^{x}}{x^{2} - 4 \, x {\left (\log \relax (3) + 1\right )} - x e^{x} - 5 \, x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.57, size = 49, normalized size = 1.69 \begin {gather*} -\frac {12\,x-5\,{\mathrm {e}}^x+3\,x\,\ln \left (81\,x^4\right )+3\,x\,\ln \relax (x)-3\,x^2}{x\,\left (\ln \left (81\,x^4\right )-x+{\mathrm {e}}^x+\ln \relax (x)+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.43, size = 61, normalized size = 2.10 \begin {gather*} \frac {3 x^{2} - 15 x \log {\relax (x )} - 12 x \log {\relax (3 )} - 7 x - 25 \log {\relax (x )} - 20 \log {\relax (3 )} - 20}{- x^{2} + x e^{x} + 5 x \log {\relax (x )} + 4 x + 4 x \log {\relax (3 )}} + \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________