Optimal. Leaf size=19 \[ 2 e^{4+\sqrt {e}-e^3-x} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {12, 2194} \begin {gather*} 2 e^{-x-e^3+\sqrt {e}+4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (2 \int e^{4+\sqrt {e}-e^3-x} \, dx\right )\\ &=2 e^{4+\sqrt {e}-e^3-x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 1.00 \begin {gather*} 2 e^{4+\sqrt {e}-e^3-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 14, normalized size = 0.74 \begin {gather*} 2 \, e^{\left (-x - e^{3} + e^{\frac {1}{2}} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 14, normalized size = 0.74 \begin {gather*} 2 \, e^{\left (-x - e^{3} + e^{\frac {1}{2}} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 15, normalized size = 0.79
method | result | size |
gosper | \(2 \,{\mathrm e}^{-{\mathrm e}^{3}+{\mathrm e}^{\frac {1}{2}}-x +4}\) | \(15\) |
derivativedivides | \(2 \,{\mathrm e}^{-{\mathrm e}^{3}+{\mathrm e}^{\frac {1}{2}}-x +4}\) | \(15\) |
default | \(2 \,{\mathrm e}^{-{\mathrm e}^{3}+{\mathrm e}^{\frac {1}{2}}-x +4}\) | \(15\) |
norman | \(2 \,{\mathrm e}^{-{\mathrm e}^{3}+{\mathrm e}^{\frac {1}{2}}-x +4}\) | \(15\) |
risch | \(2 \,{\mathrm e}^{-{\mathrm e}^{3}+{\mathrm e}^{\frac {1}{2}}-x +4}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 14, normalized size = 0.74 \begin {gather*} 2 \, e^{\left (-x - e^{3} + e^{\frac {1}{2}} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 16, normalized size = 0.84 \begin {gather*} 2\,{\mathrm {e}}^{-{\mathrm {e}}^3}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^4\,{\mathrm {e}}^{\sqrt {\mathrm {e}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 14, normalized size = 0.74 \begin {gather*} 2 e^{- x - e^{3} + e^{\frac {1}{2}} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________