Optimal. Leaf size=22 \[ e^x-\frac {324 \log \left (1+e^{e^{4 x}}\right )}{x+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x x^3+\left (324+324 x+e^{e^{4 x}} (324+324 x)\right ) \log \left (1+e^{e^{4 x}}\right )+2 e^x x^2 \log (x)+e^x x \log ^2(x)+e^{e^{4 x}} \left (-1296 e^{4 x} x^2+e^x x^3+\left (-1296 e^{4 x} x+2 e^x x^2\right ) \log (x)+e^x x \log ^2(x)\right )}{x^3+2 x^2 \log (x)+x \log ^2(x)+e^{e^{4 x}} \left (x^3+2 x^2 \log (x)+x \log ^2(x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\frac {324 (1+x) \log \left (1+e^{e^{4 x}}\right )}{x}-\frac {e^x (x+\log (x)) \left (1296 e^{e^{4 x}+3 x}-x-e^{e^{4 x}} x-\left (1+e^{e^{4 x}}\right ) \log (x)\right )}{1+e^{e^{4 x}}}}{(x+\log (x))^2} \, dx\\ &=\int \left (e^x+\frac {324 (1+x) \log \left (1+e^{e^{4 x}}\right )}{x (x+\log (x))^2}-\frac {1296 e^{e^{4 x}+4 x}}{\left (1+e^{e^{4 x}}\right ) (x+\log (x))}\right ) \, dx\\ &=324 \int \frac {(1+x) \log \left (1+e^{e^{4 x}}\right )}{x (x+\log (x))^2} \, dx-1296 \int \frac {e^{e^{4 x}+4 x}}{\left (1+e^{e^{4 x}}\right ) (x+\log (x))} \, dx+\int e^x \, dx\\ &=e^x+324 \int \left (\frac {\log \left (1+e^{e^{4 x}}\right )}{(x+\log (x))^2}+\frac {\log \left (1+e^{e^{4 x}}\right )}{x (x+\log (x))^2}\right ) \, dx-1296 \int \frac {e^{e^{4 x}+4 x}}{\left (1+e^{e^{4 x}}\right ) (x+\log (x))} \, dx\\ &=e^x+324 \int \frac {\log \left (1+e^{e^{4 x}}\right )}{(x+\log (x))^2} \, dx+324 \int \frac {\log \left (1+e^{e^{4 x}}\right )}{x (x+\log (x))^2} \, dx-1296 \int \frac {e^{e^{4 x}+4 x}}{\left (1+e^{e^{4 x}}\right ) (x+\log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 22, normalized size = 1.00 \begin {gather*} e^x-\frac {324 \log \left (1+e^{e^{4 x}}\right )}{x+\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 27, normalized size = 1.23 \begin {gather*} \frac {x e^{x} + e^{x} \log \relax (x) - 324 \, \log \left (e^{\left (e^{\left (4 \, x\right )}\right )} + 1\right )}{x + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 35, normalized size = 1.59 \begin {gather*} \frac {x e^{x} + e^{x} \log \relax (x) - 324 \, \log \left ({\left (e^{\left (x + e^{\left (4 \, x\right )}\right )} + e^{x}\right )} e^{\left (-x\right )}\right )}{x + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 20, normalized size = 0.91
method | result | size |
risch | \({\mathrm e}^{x}-\frac {324 \ln \left ({\mathrm e}^{{\mathrm e}^{4 x}}+1\right )}{x +\ln \relax (x )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 25, normalized size = 1.14 \begin {gather*} \frac {{\left (x + \log \relax (x)\right )} e^{x} - 324 \, \log \left (e^{\left (e^{\left (4 \, x\right )}\right )} + 1\right )}{x + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {x^3\,{\mathrm {e}}^x+\ln \left ({\mathrm {e}}^{{\mathrm {e}}^{4\,x}}+1\right )\,\left (324\,x+{\mathrm {e}}^{{\mathrm {e}}^{4\,x}}\,\left (324\,x+324\right )+324\right )+{\mathrm {e}}^{{\mathrm {e}}^{4\,x}}\,\left (x^3\,{\mathrm {e}}^x-1296\,x^2\,{\mathrm {e}}^{4\,x}-\ln \relax (x)\,\left (1296\,x\,{\mathrm {e}}^{4\,x}-2\,x^2\,{\mathrm {e}}^x\right )+x\,{\mathrm {e}}^x\,{\ln \relax (x)}^2\right )+x\,{\mathrm {e}}^x\,{\ln \relax (x)}^2+2\,x^2\,{\mathrm {e}}^x\,\ln \relax (x)}{x\,{\ln \relax (x)}^2+2\,x^2\,\ln \relax (x)+{\mathrm {e}}^{{\mathrm {e}}^{4\,x}}\,\left (x^3+2\,x^2\,\ln \relax (x)+x\,{\ln \relax (x)}^2\right )+x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.90, size = 19, normalized size = 0.86 \begin {gather*} e^{x} - \frac {324 \log {\left (e^{e^{4 x}} + 1 \right )}}{x + \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________