Optimal. Leaf size=18 \[ 4 e^{-x+\frac {4}{\log (5+3 x)}} \]
________________________________________________________________________________________
Rubi [F] time = 0.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {4-x \log (5+3 x)}{\log (5+3 x)}} \left (-48+(-20-12 x) \log ^2(5+3 x)\right )}{(5+3 x) \log ^2(5+3 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-4 e^{\frac {4-x \log (5+3 x)}{\log (5+3 x)}}-\frac {48 e^{\frac {4-x \log (5+3 x)}{\log (5+3 x)}}}{(5+3 x) \log ^2(5+3 x)}\right ) \, dx\\ &=-\left (4 \int e^{\frac {4-x \log (5+3 x)}{\log (5+3 x)}} \, dx\right )-48 \int \frac {e^{\frac {4-x \log (5+3 x)}{\log (5+3 x)}}}{(5+3 x) \log ^2(5+3 x)} \, dx\\ &=-\left (4 \int e^{-x+\frac {4}{\log (5+3 x)}} \, dx\right )-48 \int \frac {e^{-x+\frac {4}{\log (5+3 x)}}}{(5+3 x) \log ^2(5+3 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 18, normalized size = 1.00 \begin {gather*} 4 e^{-x+\frac {4}{\log (5+3 x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 23, normalized size = 1.28 \begin {gather*} 4 \, e^{\left (-\frac {x \log \left (3 \, x + 5\right ) - 4}{\log \left (3 \, x + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 17, normalized size = 0.94 \begin {gather*} 4 \, e^{\left (-x + \frac {4}{\log \left (3 \, x + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.51, size = 24, normalized size = 1.33
method | result | size |
norman | \(4 \,{\mathrm e}^{\frac {-x \ln \left (3 x +5\right )+4}{\ln \left (3 x +5\right )}}\) | \(24\) |
risch | \(4 \,{\mathrm e}^{-\frac {x \ln \left (3 x +5\right )-4}{\ln \left (3 x +5\right )}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 4 \, e^{\left (-x + \frac {4}{\log \left (3 \, x + 5\right )}\right )} - 4 \, \int e^{\left (-x + \frac {4}{\log \left (3 \, x + 5\right )}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.14, size = 17, normalized size = 0.94 \begin {gather*} 4\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{\frac {4}{\ln \left (3\,x+5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 19, normalized size = 1.06 \begin {gather*} 4 e^{\frac {- x \log {\left (3 x + 5 \right )} + 4}{\log {\left (3 x + 5 \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________