Optimal. Leaf size=27 \[ e^{\frac {1}{2} \left (e^x-4 e^{2 x \left (\frac {2}{3}+x\right )}+e^5 x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 32, normalized size of antiderivative = 1.19, number of steps used = 2, number of rules used = 2, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {12, 6706} \begin {gather*} \exp \left (\frac {1}{2} \left (-4 e^{\frac {2}{3} \left (3 x^2+2 x\right )}+e^5 x+e^x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{6} \int \exp \left (\frac {1}{2} \left (e^x-4 e^{\frac {1}{3} \left (4 x+6 x^2\right )}+e^5 x\right )\right ) \left (3 e^5+3 e^x+e^{\frac {1}{3} \left (4 x+6 x^2\right )} (-16-48 x)\right ) \, dx\\ &=\exp \left (\frac {1}{2} \left (e^x-4 e^{\frac {2}{3} \left (2 x+3 x^2\right )}+e^5 x\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.76, size = 29, normalized size = 1.07 \begin {gather*} e^{\frac {1}{2} \left (e^x-4 e^{\frac {2}{3} x (2+3 x)}+e^5 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 23, normalized size = 0.85 \begin {gather*} e^{\left (\frac {1}{2} \, x e^{5} - 2 \, e^{\left (2 \, x^{2} + \frac {4}{3} \, x\right )} + \frac {1}{2} \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 23, normalized size = 0.85 \begin {gather*} e^{\left (\frac {1}{2} \, x e^{5} - 2 \, e^{\left (2 \, x^{2} + \frac {4}{3} \, x\right )} + \frac {1}{2} \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 23, normalized size = 0.85
method | result | size |
risch | \({\mathrm e}^{-2 \,{\mathrm e}^{\frac {2 x \left (3 x +2\right )}{3}}+\frac {{\mathrm e}^{x}}{2}+\frac {x \,{\mathrm e}^{5}}{2}}\) | \(23\) |
norman | \({\mathrm e}^{-2 \,{\mathrm e}^{2 x^{2}+\frac {4}{3} x}+\frac {{\mathrm e}^{x}}{2}+\frac {x \,{\mathrm e}^{5}}{2}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{6} \, \int {\left (16 \, {\left (3 \, x + 1\right )} e^{\left (2 \, x^{2} + \frac {4}{3} \, x\right )} - 3 \, e^{5} - 3 \, e^{x}\right )} e^{\left (\frac {1}{2} \, x e^{5} - 2 \, e^{\left (2 \, x^{2} + \frac {4}{3} \, x\right )} + \frac {1}{2} \, e^{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.28, size = 25, normalized size = 0.93 \begin {gather*} {\mathrm {e}}^{-2\,{\mathrm {e}}^{\frac {4\,x}{3}}\,{\mathrm {e}}^{2\,x^2}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{2}}\,{\mathrm {e}}^{\frac {x\,{\mathrm {e}}^5}{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 26, normalized size = 0.96 \begin {gather*} e^{\frac {x e^{5}}{2} + \frac {e^{x}}{2} - 2 e^{2 x^{2} + \frac {4 x}{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________