Optimal. Leaf size=23 \[ \log \left (\left (3+3 x-\left (e^{25-x}+x^2\right )^2\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 34, normalized size of antiderivative = 1.48, number of steps used = 1, number of rules used = 1, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.016, Rules used = {6684} \begin {gather*} 2 \log \left (-x^4-2 e^{25-x} x^2+3 x-e^{50-2 x}+3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 \log \left (3-e^{50-2 x}+3 x-2 e^{25-x} x^2-x^4\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.29, size = 45, normalized size = 1.96 \begin {gather*} -4 x+2 \log \left (e^{50}-3 e^{2 x}-3 e^{2 x} x+2 e^{25+x} x^2+e^{2 x} x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 28, normalized size = 1.22 \begin {gather*} 2 \, \log \left (x^{4} + 2 \, x^{2} e^{\left (-x + 25\right )} - 3 \, x + e^{\left (-2 \, x + 50\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 40, normalized size = 1.74 \begin {gather*} -4 \, x + 2 \, \log \left (x^{4} e^{\left (2 \, x\right )} + 2 \, x^{2} e^{\left (x + 25\right )} - 3 \, x e^{\left (2 \, x\right )} + e^{50} - 3 \, e^{\left (2 \, x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 31, normalized size = 1.35
method | result | size |
norman | \(2 \ln \left ({\mathrm e}^{-2 x +50}+2 x^{2} {\mathrm e}^{-x +25}+x^{4}-3 x -3\right )\) | \(31\) |
risch | \(-100+2 \ln \left ({\mathrm e}^{-2 x +50}+2 x^{2} {\mathrm e}^{-x +25}+x^{4}-3 x -3\right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 54, normalized size = 2.35 \begin {gather*} -4 \, x + 2 \, \log \left (x^{4} - 3 \, x - 3\right ) + 2 \, \log \left (\frac {2 \, x^{2} e^{\left (x + 25\right )} + {\left (x^{4} - 3 \, x - 3\right )} e^{\left (2 \, x\right )} + e^{50}}{x^{4} - 3 \, x - 3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.26, size = 28, normalized size = 1.22 \begin {gather*} 2\,\ln \left ({\mathrm {e}}^{50-2\,x}-3\,x+2\,x^2\,{\mathrm {e}}^{25-x}+x^4-3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 27, normalized size = 1.17 \begin {gather*} 2 \log {\left (x^{4} + 2 x^{2} e^{25 - x} - 3 x + e^{50 - 2 x} - 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________