Optimal. Leaf size=17 \[ \frac {(36+\log (x)) \left (4-\frac {6 x}{5}+\log (x)\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 27, normalized size of antiderivative = 1.59, number of steps used = 8, number of rules used = 5, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.227, Rules used = {12, 14, 43, 2304, 2305} \begin {gather*} \frac {144}{x}+\frac {\log ^2(x)}{x}+\frac {40 \log (x)}{x}-\frac {6 \log (x)}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2304
Rule 2305
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {-520-6 x-190 \log (x)-5 \log ^2(x)}{x^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {2 (260+3 x)}{x^2}-\frac {190 \log (x)}{x^2}-\frac {5 \log ^2(x)}{x^2}\right ) \, dx\\ &=-\left (\frac {2}{5} \int \frac {260+3 x}{x^2} \, dx\right )-38 \int \frac {\log (x)}{x^2} \, dx-\int \frac {\log ^2(x)}{x^2} \, dx\\ &=\frac {38}{x}+\frac {38 \log (x)}{x}+\frac {\log ^2(x)}{x}-\frac {2}{5} \int \left (\frac {260}{x^2}+\frac {3}{x}\right ) \, dx-2 \int \frac {\log (x)}{x^2} \, dx\\ &=\frac {144}{x}-\frac {6 \log (x)}{5}+\frac {40 \log (x)}{x}+\frac {\log ^2(x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 27, normalized size = 1.59 \begin {gather*} \frac {144}{x}-\frac {6 \log (x)}{5}+\frac {40 \log (x)}{x}+\frac {\log ^2(x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.10, size = 22, normalized size = 1.29 \begin {gather*} -\frac {2 \, {\left (3 \, x - 100\right )} \log \relax (x) - 5 \, \log \relax (x)^{2} - 720}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 25, normalized size = 1.47 \begin {gather*} \frac {\log \relax (x)^{2}}{x} + \frac {40 \, \log \relax (x)}{x} + \frac {144}{x} - \frac {6}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 20, normalized size = 1.18
method | result | size |
norman | \(\frac {144+\ln \relax (x )^{2}-\frac {6 x \ln \relax (x )}{5}+40 \ln \relax (x )}{x}\) | \(20\) |
default | \(\frac {\ln \relax (x )^{2}}{x}+\frac {40 \ln \relax (x )}{x}+\frac {144}{x}-\frac {6 \ln \relax (x )}{5}\) | \(26\) |
risch | \(\frac {\ln \relax (x )^{2}}{x}+\frac {40 \ln \relax (x )}{x}-\frac {6 \left (x \ln \relax (x )-120\right )}{5 x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 31, normalized size = 1.82 \begin {gather*} \frac {\log \relax (x)^{2} + 2 \, \log \relax (x) + 2}{x} + \frac {38 \, \log \relax (x)}{x} + \frac {142}{x} - \frac {6}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.35, size = 19, normalized size = 1.12 \begin {gather*} \frac {{\ln \relax (x)}^2+40\,\ln \relax (x)+144}{x}-\frac {6\,\ln \relax (x)}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 22, normalized size = 1.29 \begin {gather*} - \frac {6 \log {\relax (x )}}{5} + \frac {\log {\relax (x )}^{2}}{x} + \frac {40 \log {\relax (x )}}{x} + \frac {144}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________