Optimal. Leaf size=23 \[ (3-x) \log \left (\frac {43}{5}+\frac {(4-x)^2}{x^2}+x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 7.77, antiderivative size = 42, normalized size of antiderivative = 1.83, number of steps used = 26, number of rules used = 12, integrand size = 85, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.141, Rules used = {6688, 6742, 2100, 2081, 2079, 800, 634, 618, 204, 628, 2523, 12} \begin {gather*} -x \log \left (\frac {16}{x^2}+x-\frac {8}{x}+\frac {48}{5}\right )+3 \log \left (5 x^3+48 x^2-40 x+80\right )-6 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 204
Rule 618
Rule 628
Rule 634
Rule 800
Rule 2079
Rule 2081
Rule 2100
Rule 2523
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {5 \left (96-56 x+8 x^2-3 x^3+x^4\right )}{x \left (80-40 x+48 x^2+5 x^3\right )}-\log \left (\frac {48}{5}+\frac {16}{x^2}-\frac {8}{x}+x\right )\right ) \, dx\\ &=-\left (5 \int \frac {96-56 x+8 x^2-3 x^3+x^4}{x \left (80-40 x+48 x^2+5 x^3\right )} \, dx\right )-\int \log \left (\frac {48}{5}+\frac {16}{x^2}-\frac {8}{x}+x\right ) \, dx\\ &=-x \log \left (\frac {48}{5}+\frac {16}{x^2}-\frac {8}{x}+x\right )-5 \int \left (\frac {1}{5}+\frac {6}{5 x}+\frac {-120-208 x-93 x^2}{5 \left (80-40 x+48 x^2+5 x^3\right )}\right ) \, dx+\int \frac {5 \left (-32+8 x+x^3\right )}{80-40 x+48 x^2+5 x^3} \, dx\\ &=-x-6 \log (x)-x \log \left (\frac {48}{5}+\frac {16}{x^2}-\frac {8}{x}+x\right )+5 \int \frac {-32+8 x+x^3}{80-40 x+48 x^2+5 x^3} \, dx-\int \frac {-120-208 x-93 x^2}{80-40 x+48 x^2+5 x^3} \, dx\\ &=-x-6 \log (x)-x \log \left (\frac {48}{5}+\frac {16}{x^2}-\frac {8}{x}+x\right )+\frac {31}{5} \log \left (80-40 x+48 x^2+5 x^3\right )-\frac {1}{15} \int \frac {-5520+5808 x}{80-40 x+48 x^2+5 x^3} \, dx+5 \int \left (\frac {1}{5}-\frac {16 \left (15-5 x+3 x^2\right )}{5 \left (80-40 x+48 x^2+5 x^3\right )}\right ) \, dx\\ &=-6 \log (x)-x \log \left (\frac {48}{5}+\frac {16}{x^2}-\frac {8}{x}+x\right )+\frac {31}{5} \log \left (80-40 x+48 x^2+5 x^3\right )-\frac {1}{15} \operatorname {Subst}\left (\int \frac {-\frac {120528}{5}+5808 x}{\frac {13392}{25}-\frac {968 x}{5}+5 x^3} \, dx,x,\frac {16}{5}+x\right )-16 \int \frac {15-5 x+3 x^2}{80-40 x+48 x^2+5 x^3} \, dx\\ &=-6 \log (x)-x \log \left (\frac {48}{5}+\frac {16}{x^2}-\frac {8}{x}+x\right )+3 \log \left (80-40 x+48 x^2+5 x^3\right )-\frac {16}{15} \int \frac {345-363 x}{80-40 x+48 x^2+5 x^3} \, dx-\frac {5}{3} \operatorname {Subst}\left (\int \frac {-\frac {120528}{5}+5808 x}{\left (\frac {2}{3} \left (\frac {242\ 3^{2/3}}{\sqrt [3]{7533-5 \sqrt {569145}}}+\sqrt [3]{3 \left (7533-5 \sqrt {569145}\right )}\right )+5 x\right ) \left (-\frac {4}{9} \left (726-\frac {175692 \sqrt [3]{3}}{\left (7533-5 \sqrt {569145}\right )^{2/3}}-\left (3 \left (7533-5 \sqrt {569145}\right )\right )^{2/3}\right )-\frac {10 \left (242 \sqrt [3]{\frac {3}{7533-5 \sqrt {569145}}}+\sqrt [3]{7533-5 \sqrt {569145}}\right ) x}{3^{2/3}}+25 x^2\right )} \, dx,x,\frac {16}{5}+x\right )\\ &=-6 \log (x)-x \log \left (\frac {48}{5}+\frac {16}{x^2}-\frac {8}{x}+x\right )+3 \log \left (80-40 x+48 x^2+5 x^3\right )-\frac {16}{15} \operatorname {Subst}\left (\int \frac {\frac {7533}{5}-363 x}{\frac {13392}{25}-\frac {968 x}{5}+5 x^3} \, dx,x,\frac {16}{5}+x\right )-\frac {5}{3} \operatorname {Subst}\left (\int \left (\frac {12 \left (7533-5 \sqrt {569145}\right )^{2/3} \left (-58564 3^{2/3}-7533 \sqrt [3]{7533-5 \sqrt {569145}}-242 \sqrt [3]{3} \left (7533-5 \sqrt {569145}\right )^{2/3}\right )}{5 \left (58564 \sqrt [3]{3}+\left (2511\ 3^{2/3}-5 \sqrt [6]{3} \sqrt {189715}\right ) \sqrt [3]{7533-5 \sqrt {569145}}+242 \left (7533-5 \sqrt {569145}\right )^{2/3}\right ) \left (484\ 3^{2/3}+2 \sqrt [3]{3} \left (7533-5 \sqrt {569145}\right )^{2/3}+15 \sqrt [3]{7533-5 \sqrt {569145}} x\right )}+\frac {12 \left (7533-5 \sqrt {569145}\right )^{2/3} \left (-4 \left (\sqrt [3]{3} \left (11829119-12555 \sqrt {569145}\right )+121 \left (2511\ 3^{2/3}+5 \sqrt [6]{3} \sqrt {189715}\right ) \sqrt [3]{7533-5 \sqrt {569145}}+29282 \left (7533-5 \sqrt {569145}\right )^{2/3}\right )+5 \left (58564\ 3^{2/3} \sqrt [3]{7533-5 \sqrt {569145}}+7533 \left (7533-5 \sqrt {569145}\right )^{2/3}+242 \sqrt [3]{3} \left (7533-5 \sqrt {569145}\right )\right ) x\right )}{5 \left (58564 \sqrt [3]{3}+\left (2511\ 3^{2/3}-5 \sqrt [6]{3} \sqrt {189715}\right ) \sqrt [3]{7533-5 \sqrt {569145}}+242 \left (7533-5 \sqrt {569145}\right )^{2/3}\right ) \left (4 \left (58564 \sqrt [3]{3}+\left (2511\ 3^{2/3}-5 \sqrt [6]{3} \sqrt {189715}\right ) \sqrt [3]{7533-5 \sqrt {569145}}-242 \left (7533-5 \sqrt {569145}\right )^{2/3}\right )-10\ 3^{2/3} \left (2511\ 3^{2/3}-5 \sqrt [6]{3} \sqrt {189715}+242 \sqrt [3]{7533-5 \sqrt {569145}}\right ) x+75 \left (7533-5 \sqrt {569145}\right )^{2/3} x^2\right )}\right ) \, dx,x,\frac {16}{5}+x\right )\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.10, size = 166, normalized size = 7.22 \begin {gather*} -6 \log (x)-x \log \left (\frac {48}{5}+\frac {16}{x^2}-\frac {8}{x}+x\right )-16 \text {RootSum}\left [80-40 \text {$\#$1}+48 \text {$\#$1}^2+5 \text {$\#$1}^3\&,\frac {15 \log (x-\text {$\#$1})-5 \log (x-\text {$\#$1}) \text {$\#$1}+3 \log (x-\text {$\#$1}) \text {$\#$1}^2}{-40+96 \text {$\#$1}+15 \text {$\#$1}^2}\&\right ]+\text {RootSum}\left [80-40 \text {$\#$1}+48 \text {$\#$1}^2+5 \text {$\#$1}^3\&,\frac {120 \log (x-\text {$\#$1})+208 \log (x-\text {$\#$1}) \text {$\#$1}+93 \log (x-\text {$\#$1}) \text {$\#$1}^2}{-40+96 \text {$\#$1}+15 \text {$\#$1}^2}\&\right ] \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 26, normalized size = 1.13 \begin {gather*} -{\left (x - 3\right )} \log \left (\frac {5 \, x^{3} + 48 \, x^{2} - 40 \, x + 80}{5 \, x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 47, normalized size = 2.04 \begin {gather*} -x \log \left (\frac {5 \, x^{3} + 48 \, x^{2} - 40 \, x + 80}{5 \, x^{2}}\right ) + 3 \, \log \left (5 \, x^{3} + 48 \, x^{2} - 40 \, x + 80\right ) - 6 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 48, normalized size = 2.09
method | result | size |
risch | \(-\ln \left (\frac {5 x^{3}+48 x^{2}-40 x +80}{5 x^{2}}\right ) x -6 \ln \relax (x )+3 \ln \left (5 x^{3}+48 x^{2}-40 x +80\right )\) | \(48\) |
norman | \(3 \ln \left (\frac {5 x^{3}+48 x^{2}-40 x +80}{5 x^{2}}\right )-\ln \left (\frac {5 x^{3}+48 x^{2}-40 x +80}{5 x^{2}}\right ) x\) | \(49\) |
default | \(-6 \ln \relax (x )-\left (\munderset {\textit {\_R} =\RootOf \left (5 \textit {\_Z}^{3}+48 \textit {\_Z}^{2}-40 \textit {\_Z} +80\right )}{\sum }\frac {\left (-93 \textit {\_R}^{2}-208 \textit {\_R} -120\right ) \ln \left (x -\textit {\_R} \right )}{15 \textit {\_R}^{2}+96 \textit {\_R} -40}\right )-x \ln \left (\frac {5 x^{3}+48 x^{2}-40 x +80}{x^{2}}\right )+16 \left (\munderset {\textit {\_R} =\RootOf \left (5 \textit {\_Z}^{3}+48 \textit {\_Z}^{2}-40 \textit {\_Z} +80\right )}{\sum }\frac {\left (-3 \textit {\_R}^{2}+5 \textit {\_R} -15\right ) \ln \left (x -\textit {\_R} \right )}{15 \textit {\_R}^{2}+96 \textit {\_R} -40}\right )+x \ln \relax (5)\) | \(133\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 33, normalized size = 1.43 \begin {gather*} x \log \relax (5) - {\left (x - 3\right )} \log \left (5 \, x^{3} + 48 \, x^{2} - 40 \, x + 80\right ) + 2 \, {\left (x - 3\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.17, size = 42, normalized size = 1.83 \begin {gather*} 3\,\ln \left (x^3+\frac {48\,x^2}{5}-8\,x+16\right )-6\,\ln \relax (x)-x\,\ln \left (\frac {x^3+\frac {48\,x^2}{5}-8\,x+16}{x^2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.24, size = 44, normalized size = 1.91 \begin {gather*} - x \log {\left (\frac {x^{3} + \frac {48 x^{2}}{5} - 8 x + 16}{x^{2}} \right )} - 6 \log {\relax (x )} + 3 \log {\left (5 x^{3} + 48 x^{2} - 40 x + 80 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________