Optimal. Leaf size=17 \[ 2+\frac {1}{\log \left (-\frac {54 x^2}{(e-x)^2}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 21, normalized size of antiderivative = 1.24, number of steps used = 3, number of rules used = 3, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {12, 1593, 6686} \begin {gather*} \frac {1}{\log \left (-\frac {54 x^2}{x^2-2 e x+e^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 6686
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left ((2 e) \int \frac {1}{\left (e x-x^2\right ) \log ^2\left (-\frac {54 x^2}{e^2-2 e x+x^2}\right )} \, dx\right )\\ &=-\left ((2 e) \int \frac {1}{(e-x) x \log ^2\left (-\frac {54 x^2}{e^2-2 e x+x^2}\right )} \, dx\right )\\ &=\frac {1}{\log \left (-\frac {54 x^2}{e^2-2 e x+x^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 0.88 \begin {gather*} \frac {1}{\log \left (-\frac {54 x^2}{(e-x)^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.95, size = 47, normalized size = 2.76 \begin {gather*} \frac {\log \left (\frac {54 \, x^{2}}{x^{2} - 2 \, x e + e^{2}}\right )}{\pi ^{2} + \log \left (\frac {54 \, x^{2}}{x^{2} - 2 \, x e + e^{2}}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 21, normalized size = 1.24 \begin {gather*} \frac {1}{\log \left (-\frac {54 \, x^{2}}{x^{2} - 2 \, x e + e^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.54, size = 22, normalized size = 1.29
method | result | size |
risch | \(\frac {1}{\ln \left (-\frac {54 x^{2}}{{\mathrm e}^{2}-2 x \,{\mathrm e}+x^{2}}\right )}\) | \(22\) |
norman | \(\frac {1}{\ln \left (-\frac {54 x^{2}}{{\mathrm e}^{2}-2 x \,{\mathrm e}+x^{2}}\right )}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.49, size = 36, normalized size = 2.12 \begin {gather*} \frac {e}{{\left (3 i \, \pi + 3 \, \log \relax (3) + \log \relax (2)\right )} e - 2 \, e \log \left (x - e\right ) + 2 \, e \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.05, size = 21, normalized size = 1.24 \begin {gather*} \frac {1}{\ln \left (\frac {54\,x^2}{{\left (x-\mathrm {e}\right )}^2}\right )+\pi \,1{}\mathrm {i}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 1.29 \begin {gather*} \frac {1}{\log {\left (- \frac {54 x^{2}}{x^{2} - 2 e x + e^{2}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________