Optimal. Leaf size=31 \[ 1+\frac {1}{x}+4 \left (4+\frac {4}{x-\left (-\frac {e^{-1+x}}{x}+x\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-\frac {e^{-4+4 x}}{x^4}+\frac {4 e^{-3+3 x}}{x^2}-17 x^2+34 x^3-x^4+\frac {e^{-2+2 x} \left (-30 x+26 x^2\right )}{x^2}+\frac {e^{-1+x} \left (-4 x^2-28 x^3\right )}{x}}{-4 e^{-3+3 x}+\frac {e^{-4+4 x}}{x^2}+x^4-2 x^5+x^6+\frac {e^{-2+2 x} \left (-2 x^3+6 x^4\right )}{x^2}+\frac {e^{-1+x} \left (4 x^4-4 x^5\right )}{x}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^{4 x}+4 e^{1+3 x} x^2-4 e^{3+x} x^5 (1+7 x)+2 e^{2+2 x} x^3 (-15+13 x)-e^4 x^6 \left (17-34 x+x^2\right )}{x^2 \left (e^{2 x}-2 e^{1+x} x^2+e^2 (-1+x) x^3\right )^2} \, dx\\ &=\int \left (-\frac {1}{x^2}-\frac {16 e^3 x^3 \left (4 e^x+3 e x-2 e^x x-6 e x^2+2 e x^3\right )}{\left (e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4\right )^2}+\frac {32 e^2 (-1+x) x}{e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4}\right ) \, dx\\ &=\frac {1}{x}+\left (32 e^2\right ) \int \frac {(-1+x) x}{e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4} \, dx-\left (16 e^3\right ) \int \frac {x^3 \left (4 e^x+3 e x-2 e^x x-6 e x^2+2 e x^3\right )}{\left (e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4\right )^2} \, dx\\ &=\frac {1}{x}+\left (32 e^2\right ) \int \left (-\frac {x}{e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4}+\frac {x^2}{e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4}\right ) \, dx-\left (16 e^3\right ) \int \left (\frac {4 e^x x^3}{\left (e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4\right )^2}+\frac {3 e x^4}{\left (e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4\right )^2}-\frac {2 e^x x^4}{\left (e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4\right )^2}-\frac {6 e x^5}{\left (e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4\right )^2}+\frac {2 e x^6}{\left (e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4\right )^2}\right ) \, dx\\ &=\frac {1}{x}-\left (32 e^2\right ) \int \frac {x}{e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4} \, dx+\left (32 e^2\right ) \int \frac {x^2}{e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4} \, dx+\left (32 e^3\right ) \int \frac {e^x x^4}{\left (e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4\right )^2} \, dx-\left (64 e^3\right ) \int \frac {e^x x^3}{\left (e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4\right )^2} \, dx-\left (32 e^4\right ) \int \frac {x^6}{\left (e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4\right )^2} \, dx-\left (48 e^4\right ) \int \frac {x^4}{\left (e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4\right )^2} \, dx+\left (96 e^4\right ) \int \frac {x^5}{\left (e^{2 x}-2 e^{1+x} x^2-e^2 x^3+e^2 x^4\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 40, normalized size = 1.29 \begin {gather*} \frac {1}{x}-\frac {16 e^2 x^2}{e^{2 x}-2 e^{1+x} x^2+e^2 (-1+x) x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 65, normalized size = 2.10 \begin {gather*} \frac {x^{2} - 2 \, x e^{\left (x - \log \relax (x) - 1\right )} - 17 \, x + e^{\left (2 \, x - 2 \, \log \relax (x) - 2\right )}}{x^{3} - 2 \, x^{2} e^{\left (x - \log \relax (x) - 1\right )} - x^{2} + x e^{\left (2 \, x - 2 \, \log \relax (x) - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 59, normalized size = 1.90 \begin {gather*} \frac {x^{4} e^{2} - 33 \, x^{3} e^{2} - 2 \, x^{2} e^{\left (x + 1\right )} + e^{\left (2 \, x\right )}}{x^{5} e^{2} - x^{4} e^{2} - 2 \, x^{3} e^{\left (x + 1\right )} + x e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 32, normalized size = 1.03
method | result | size |
risch | \(\frac {1}{x}-\frac {16}{\frac {{\mathrm e}^{2 x -2}}{x^{2}}-2 \,{\mathrm e}^{x -1}+x^{2}-x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 3.01, size = 59, normalized size = 1.90 \begin {gather*} \frac {x^{4} e^{2} - 17 \, x^{3} e^{2} - 2 \, x^{2} e^{\left (x + 1\right )} + e^{\left (2 \, x\right )}}{x^{5} e^{2} - x^{4} e^{2} - 2 \, x^{3} e^{\left (x + 1\right )} + x e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{4\,x-4\,\ln \relax (x)-4}+{\mathrm {e}}^{2\,x-2\,\ln \relax (x)-2}\,\left (30\,x-26\,x^2\right )+{\mathrm {e}}^{x-\ln \relax (x)-1}\,\left (28\,x^3+4\,x^2\right )-4\,x\,{\mathrm {e}}^{3\,x-3\,\ln \relax (x)-3}+17\,x^2-34\,x^3+x^4}{x^2\,{\mathrm {e}}^{4\,x-4\,\ln \relax (x)-4}-4\,x^3\,{\mathrm {e}}^{3\,x-3\,\ln \relax (x)-3}-{\mathrm {e}}^{2\,x-2\,\ln \relax (x)-2}\,\left (2\,x^3-6\,x^4\right )+{\mathrm {e}}^{x-\ln \relax (x)-1}\,\left (4\,x^4-4\,x^5\right )+x^4-2\,x^5+x^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 31, normalized size = 1.00 \begin {gather*} - \frac {16 x^{2}}{x^{4} - x^{3} - 2 x^{2} e^{x - 1} + e^{2 x - 2}} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________