Optimal. Leaf size=25 \[ \frac {3 \left (-e^{x^2}+x\right )}{2-\frac {1}{x}+x-\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6 x+9 x^2+e^{x^2} \left (3-3 x+9 x^2-12 x^3-6 x^4\right )+\left (-3 x^2+6 e^{x^2} x^3\right ) \log (x)}{1-4 x+2 x^2+4 x^3+x^4+\left (2 x-4 x^2-2 x^3\right ) \log (x)+x^2 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (-((2-3 x) x)-e^{x^2} \left (-1+x-3 x^2+4 x^3+2 x^4\right )-\left (x^2-2 e^{x^2} x^3\right ) \log (x)\right )}{\left (1-2 x-x^2+x \log (x)\right )^2} \, dx\\ &=3 \int \frac {-((2-3 x) x)-e^{x^2} \left (-1+x-3 x^2+4 x^3+2 x^4\right )-\left (x^2-2 e^{x^2} x^3\right ) \log (x)}{\left (1-2 x-x^2+x \log (x)\right )^2} \, dx\\ &=3 \int \left (-\frac {x (2-3 x+x \log (x))}{\left (-1+2 x+x^2-x \log (x)\right )^2}-\frac {e^{x^2} \left (-1+x-3 x^2+4 x^3+2 x^4-2 x^3 \log (x)\right )}{\left (-1+2 x+x^2-x \log (x)\right )^2}\right ) \, dx\\ &=-\left (3 \int \frac {x (2-3 x+x \log (x))}{\left (-1+2 x+x^2-x \log (x)\right )^2} \, dx\right )-3 \int \frac {e^{x^2} \left (-1+x-3 x^2+4 x^3+2 x^4-2 x^3 \log (x)\right )}{\left (-1+2 x+x^2-x \log (x)\right )^2} \, dx\\ &=-\left (3 \int \left (\frac {x \left (1-x+x^2\right )}{\left (-1+2 x+x^2-x \log (x)\right )^2}-\frac {x}{-1+2 x+x^2-x \log (x)}\right ) \, dx\right )-3 \int \left (\frac {e^{x^2} \left (-1+x-x^2\right )}{\left (-1+2 x+x^2-x \log (x)\right )^2}+\frac {2 e^{x^2} x^2}{-1+2 x+x^2-x \log (x)}\right ) \, dx\\ &=-\left (3 \int \frac {e^{x^2} \left (-1+x-x^2\right )}{\left (-1+2 x+x^2-x \log (x)\right )^2} \, dx\right )-3 \int \frac {x \left (1-x+x^2\right )}{\left (-1+2 x+x^2-x \log (x)\right )^2} \, dx+3 \int \frac {x}{-1+2 x+x^2-x \log (x)} \, dx-6 \int \frac {e^{x^2} x^2}{-1+2 x+x^2-x \log (x)} \, dx\\ &=3 \int \frac {x}{-1+2 x+x^2-x \log (x)} \, dx-3 \int \left (-\frac {e^{x^2}}{\left (-1+2 x+x^2-x \log (x)\right )^2}+\frac {e^{x^2} x}{\left (-1+2 x+x^2-x \log (x)\right )^2}-\frac {e^{x^2} x^2}{\left (-1+2 x+x^2-x \log (x)\right )^2}\right ) \, dx-3 \int \left (\frac {x}{\left (-1+2 x+x^2-x \log (x)\right )^2}-\frac {x^2}{\left (-1+2 x+x^2-x \log (x)\right )^2}+\frac {x^3}{\left (-1+2 x+x^2-x \log (x)\right )^2}\right ) \, dx-6 \int \frac {e^{x^2} x^2}{-1+2 x+x^2-x \log (x)} \, dx\\ &=3 \int \frac {e^{x^2}}{\left (-1+2 x+x^2-x \log (x)\right )^2} \, dx-3 \int \frac {x}{\left (-1+2 x+x^2-x \log (x)\right )^2} \, dx-3 \int \frac {e^{x^2} x}{\left (-1+2 x+x^2-x \log (x)\right )^2} \, dx+3 \int \frac {x^2}{\left (-1+2 x+x^2-x \log (x)\right )^2} \, dx+3 \int \frac {e^{x^2} x^2}{\left (-1+2 x+x^2-x \log (x)\right )^2} \, dx-3 \int \frac {x^3}{\left (-1+2 x+x^2-x \log (x)\right )^2} \, dx+3 \int \frac {x}{-1+2 x+x^2-x \log (x)} \, dx-6 \int \frac {e^{x^2} x^2}{-1+2 x+x^2-x \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.66, size = 28, normalized size = 1.12 \begin {gather*} \frac {3 \left (e^{x^2}-x\right ) x}{1-2 x-x^2+x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 28, normalized size = 1.12 \begin {gather*} \frac {3 \, {\left (x^{2} - x e^{\left (x^{2}\right )}\right )}}{x^{2} - x \log \relax (x) + 2 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 28, normalized size = 1.12 \begin {gather*} \frac {3 \, {\left (x^{2} - x e^{\left (x^{2}\right )}\right )}}{x^{2} - x \log \relax (x) + 2 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.08
method | result | size |
risch | \(\frac {3 \left (-{\mathrm e}^{x^{2}}+x \right ) x}{x^{2}-x \ln \relax (x )+2 x -1}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 28, normalized size = 1.12 \begin {gather*} \frac {3 \, {\left (x^{2} - x e^{\left (x^{2}\right )}\right )}}{x^{2} - x \log \relax (x) + 2 \, x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.48, size = 26, normalized size = 1.04 \begin {gather*} \frac {3\,x\,\left (x-{\mathrm {e}}^{x^2}\right )}{2\,x-x\,\ln \relax (x)+x^2-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 41, normalized size = 1.64 \begin {gather*} - \frac {3 x^{2}}{- x^{2} + x \log {\relax (x )} - 2 x + 1} - \frac {3 x e^{x^{2}}}{x^{2} - x \log {\relax (x )} + 2 x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________