Optimal. Leaf size=17 \[ \frac {x+\log (3)}{\log \left (4-\frac {7}{2+x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-7 x-7 \log (3)+\left (2+9 x+4 x^2\right ) \log \left (\frac {1+4 x}{2+x}\right )}{\left (2+9 x+4 x^2\right ) \log ^2\left (\frac {1+4 x}{2+x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\frac {7 (x+\log (3))}{2+9 x+4 x^2}+\log \left (\frac {1+4 x}{2+x}\right )}{\log ^2\left (\frac {1+4 x}{2+x}\right )} \, dx\\ &=\int \left (-\frac {7 (x+\log (3))}{(2+x) (1+4 x) \log ^2\left (\frac {1+4 x}{2+x}\right )}+\frac {1}{\log \left (\frac {1+4 x}{2+x}\right )}\right ) \, dx\\ &=-\left (7 \int \frac {x+\log (3)}{(2+x) (1+4 x) \log ^2\left (\frac {1+4 x}{2+x}\right )} \, dx\right )+\int \frac {1}{\log \left (\frac {1+4 x}{2+x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 19, normalized size = 1.12 \begin {gather*} \frac {x+\log (3)}{\log \left (\frac {1+4 x}{2+x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 19, normalized size = 1.12 \begin {gather*} \frac {x + \log \relax (3)}{\log \left (\frac {4 \, x + 1}{x + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 72, normalized size = 4.24 \begin {gather*} \frac {\frac {{\left (4 \, x + 1\right )} \log \relax (3)}{x + 2} - \frac {2 \, {\left (4 \, x + 1\right )}}{x + 2} - 4 \, \log \relax (3) + 1}{\frac {{\left (4 \, x + 1\right )} \log \left (\frac {4 \, x + 1}{x + 2}\right )}{x + 2} - 4 \, \log \left (\frac {4 \, x + 1}{x + 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.63, size = 20, normalized size = 1.18
method | result | size |
norman | \(\frac {\ln \relax (3)+x}{\ln \left (\frac {4 x +1}{2+x}\right )}\) | \(20\) |
risch | \(\frac {\ln \relax (3)+x}{\ln \left (\frac {4 x +1}{2+x}\right )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 36, normalized size = 2.12 \begin {gather*} \frac {x}{\log \left (4 \, x + 1\right ) - \log \left (x + 2\right )} + \frac {\log \relax (3)}{\log \left (4 \, x + 1\right ) - \log \left (x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.32, size = 19, normalized size = 1.12 \begin {gather*} \frac {x+\ln \relax (3)}{\ln \left (\frac {4\,x+1}{x+2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 14, normalized size = 0.82 \begin {gather*} \frac {x + \log {\relax (3 )}}{\log {\left (\frac {4 x + 1}{x + 2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________