Optimal. Leaf size=18 \[ \frac {1}{3} x \left (1+e^4+x\right ) \left (-\frac {4}{5}+5 x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 34, normalized size of antiderivative = 1.89, number of steps used = 2, number of rules used = 1, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {12} \begin {gather*} \frac {5 x^3}{3}+\frac {7 x^2}{5}-\frac {4 x}{15}+\frac {1}{375} e^4 (2-25 x)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{15} \int \left (-4+42 x+75 x^2+e^4 (-4+50 x)\right ) \, dx\\ &=\frac {1}{375} e^4 (2-25 x)^2-\frac {4 x}{15}+\frac {7 x^2}{5}+\frac {5 x^3}{3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 32, normalized size = 1.78 \begin {gather*} \frac {1}{15} \left (-4 x-4 e^4 x+21 x^2+25 e^4 x^2+25 x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.85, size = 27, normalized size = 1.50 \begin {gather*} \frac {5}{3} \, x^{3} + \frac {7}{5} \, x^{2} + \frac {1}{15} \, {\left (25 \, x^{2} - 4 \, x\right )} e^{4} - \frac {4}{15} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 27, normalized size = 1.50 \begin {gather*} \frac {5}{3} \, x^{3} + \frac {7}{5} \, x^{2} + \frac {1}{15} \, {\left (25 \, x^{2} - 4 \, x\right )} e^{4} - \frac {4}{15} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 23, normalized size = 1.28
method | result | size |
gosper | \(\frac {x \left (25 x \,{\mathrm e}^{4}+25 x^{2}-4 \,{\mathrm e}^{4}+21 x -4\right )}{15}\) | \(23\) |
norman | \(\left (-\frac {4 \,{\mathrm e}^{4}}{15}-\frac {4}{15}\right ) x +\left (\frac {5 \,{\mathrm e}^{4}}{3}+\frac {7}{5}\right ) x^{2}+\frac {5 x^{3}}{3}\) | \(25\) |
risch | \(\frac {5 x^{2} {\mathrm e}^{4}}{3}-\frac {4 x \,{\mathrm e}^{4}}{15}+\frac {5 x^{3}}{3}+\frac {7 x^{2}}{5}-\frac {4 x}{15}\) | \(27\) |
default | \(\frac {{\mathrm e}^{4} \left (25 x^{2}-4 x \right )}{15}+\frac {5 x^{3}}{3}+\frac {7 x^{2}}{5}-\frac {4 x}{15}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.37, size = 27, normalized size = 1.50 \begin {gather*} \frac {5}{3} \, x^{3} + \frac {7}{5} \, x^{2} + \frac {1}{15} \, {\left (25 \, x^{2} - 4 \, x\right )} e^{4} - \frac {4}{15} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.04, size = 13, normalized size = 0.72 \begin {gather*} \frac {x\,\left (25\,x-4\right )\,\left (x+{\mathrm {e}}^4+1\right )}{15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 32, normalized size = 1.78 \begin {gather*} \frac {5 x^{3}}{3} + x^{2} \left (\frac {7}{5} + \frac {5 e^{4}}{3}\right ) + x \left (- \frac {4 e^{4}}{15} - \frac {4}{15}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________