Optimal. Leaf size=30 \[ 2+\left (-e^{4 (5+x)}+x\right ) \left (x+\log \left (\frac {1}{5} \left (3+12 e^{x^2}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{20+4 x} (-1-4 x)+2 x+e^{x^2} \left (e^{20+4 x} (-4-24 x)+8 x+8 x^2\right )+\left (1-4 e^{20+4 x}+e^{x^2} \left (4-16 e^{20+4 x}\right )\right ) \log \left (\frac {1}{5} \left (3+12 e^{x^2}\right )\right )}{1+4 e^{x^2}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{20+4 x}+2 x-6 e^{20+4 x} x+\frac {2 \left (e^{20+4 x}-x\right ) x}{1+4 e^{x^2}}+2 x^2+\log \left (\frac {3}{5} \left (1+4 e^{x^2}\right )\right )-4 e^{20+4 x} \log \left (\frac {3}{5} \left (1+4 e^{x^2}\right )\right )\right ) \, dx\\ &=x^2+\frac {2 x^3}{3}+2 \int \frac {\left (e^{20+4 x}-x\right ) x}{1+4 e^{x^2}} \, dx-4 \int e^{20+4 x} \log \left (\frac {3}{5} \left (1+4 e^{x^2}\right )\right ) \, dx-6 \int e^{20+4 x} x \, dx-\int e^{20+4 x} \, dx+\int \log \left (\frac {3}{5} \left (1+4 e^{x^2}\right )\right ) \, dx\\ &=-\frac {1}{4} e^{20+4 x}-\frac {3}{2} e^{20+4 x} x+x^2+\frac {2 x^3}{3}-e^{20+4 x} \log \left (\frac {3}{5} \left (1+4 e^{x^2}\right )\right )+x \log \left (\frac {3}{5} \left (1+4 e^{x^2}\right )\right )+\frac {3}{2} \int e^{20+4 x} \, dx+2 \int \left (\frac {e^{20+4 x} x}{1+4 e^{x^2}}-\frac {x^2}{1+4 e^{x^2}}\right ) \, dx+4 \int \frac {2 e^{20+4 x+x^2} x}{1+4 e^{x^2}} \, dx-\int \frac {8 e^{x^2} x^2}{1+4 e^{x^2}} \, dx\\ &=\frac {1}{8} e^{20+4 x}-\frac {3}{2} e^{20+4 x} x+x^2+\frac {2 x^3}{3}-e^{20+4 x} \log \left (\frac {3}{5} \left (1+4 e^{x^2}\right )\right )+x \log \left (\frac {3}{5} \left (1+4 e^{x^2}\right )\right )+2 \int \frac {e^{20+4 x} x}{1+4 e^{x^2}} \, dx-2 \int \frac {x^2}{1+4 e^{x^2}} \, dx+8 \int \frac {e^{20+4 x+x^2} x}{1+4 e^{x^2}} \, dx-8 \int \frac {e^{x^2} x^2}{1+4 e^{x^2}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 29, normalized size = 0.97 \begin {gather*} -\left (\left (e^{4 (5+x)}-x\right ) \left (x+\log \left (\frac {3}{5} \left (1+4 e^{x^2}\right )\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 33, normalized size = 1.10 \begin {gather*} x^{2} - x e^{\left (4 \, x + 20\right )} + {\left (x - e^{\left (4 \, x + 20\right )}\right )} \log \left (\frac {12}{5} \, e^{\left (x^{2}\right )} + \frac {3}{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 41, normalized size = 1.37 \begin {gather*} x^{2} - x e^{\left (4 \, x + 20\right )} + x \log \left (\frac {12}{5} \, e^{\left (x^{2}\right )} + \frac {3}{5}\right ) - e^{\left (4 \, x + 20\right )} \log \left (\frac {12}{5} \, e^{\left (x^{2}\right )} + \frac {3}{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 34, normalized size = 1.13
method | result | size |
risch | \(\left (x -{\mathrm e}^{20+4 x}\right ) \ln \left (\frac {12 \,{\mathrm e}^{x^{2}}}{5}+\frac {3}{5}\right )+x^{2}-{\mathrm e}^{20+4 x} x\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 68, normalized size = 2.27 \begin {gather*} x^{2} - x {\left (\log \relax (5) - \log \relax (3)\right )} - {\left (x e^{20} - {\left (\log \relax (5) - \log \relax (3)\right )} e^{20}\right )} e^{\left (4 \, x\right )} + {\left (x - e^{\left (4 \, x + 20\right )} + 1\right )} \log \left (4 \, e^{\left (x^{2}\right )} + 1\right ) - \log \left (4 \, e^{\left (x^{2}\right )} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.75, size = 22, normalized size = 0.73 \begin {gather*} \left (x+\ln \left (\frac {12\,{\mathrm {e}}^{x^2}}{5}+\frac {3}{5}\right )\right )\,\left (x-{\mathrm {e}}^{4\,x+20}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________