Optimal. Leaf size=32 \[ \frac {\left (5+e^{5 e^x}\right )^2 \log ^2\left (3+\frac {1}{3} \left (2-e^5\right ) x\right )}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 35.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-100 x+50 e^5 x\right ) \log \left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )+\left (450+100 x-50 e^5 x\right ) \log ^2\left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )+e^{10 e^x} \left (\left (-4 x+2 e^5 x\right ) \log \left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )+\left (18+4 x-2 e^5 x+e^x \left (-90 x-20 x^2+10 e^5 x^2\right )\right ) \log ^2\left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )\right )+e^{5 e^x} \left (\left (-40 x+20 e^5 x\right ) \log \left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )+\left (180+40 x-20 e^5 x+e^x \left (-450 x-100 x^2+50 e^5 x^2\right )\right ) \log ^2\left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )\right )}{-9 x^3-2 x^4+e^5 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-100 x+50 e^5 x\right ) \log \left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )+\left (450+100 x-50 e^5 x\right ) \log ^2\left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )+e^{10 e^x} \left (\left (-4 x+2 e^5 x\right ) \log \left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )+\left (18+4 x-2 e^5 x+e^x \left (-90 x-20 x^2+10 e^5 x^2\right )\right ) \log ^2\left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )\right )+e^{5 e^x} \left (\left (-40 x+20 e^5 x\right ) \log \left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )+\left (180+40 x-20 e^5 x+e^x \left (-450 x-100 x^2+50 e^5 x^2\right )\right ) \log ^2\left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )\right )}{-9 x^3+\left (-2+e^5\right ) x^4} \, dx\\ &=\int \frac {\left (-100 x+50 e^5 x\right ) \log \left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )+\left (450+100 x-50 e^5 x\right ) \log ^2\left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )+e^{10 e^x} \left (\left (-4 x+2 e^5 x\right ) \log \left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )+\left (18+4 x-2 e^5 x+e^x \left (-90 x-20 x^2+10 e^5 x^2\right )\right ) \log ^2\left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )\right )+e^{5 e^x} \left (\left (-40 x+20 e^5 x\right ) \log \left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )+\left (180+40 x-20 e^5 x+e^x \left (-450 x-100 x^2+50 e^5 x^2\right )\right ) \log ^2\left (\frac {1}{3} \left (9+2 x-e^5 x\right )\right )\right )}{x^3 \left (-9+\left (-2+e^5\right ) x\right )} \, dx\\ &=\int \frac {2 \left (5+e^{5 e^x}\right ) \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right ) \left (-\left (\left (-2+e^5\right ) \left (5+e^{5 e^x}\right ) x\right )-\left (-5-e^{5 e^x}+5 e^{5 e^x+x} x\right ) \left (-9+\left (-2+e^5\right ) x\right ) \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )}{x^3 \left (9-\left (-2+e^5\right ) x\right )} \, dx\\ &=2 \int \frac {\left (5+e^{5 e^x}\right ) \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right ) \left (-\left (\left (-2+e^5\right ) \left (5+e^{5 e^x}\right ) x\right )-\left (-5-e^{5 e^x}+5 e^{5 e^x+x} x\right ) \left (-9+\left (-2+e^5\right ) x\right ) \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )}{x^3 \left (9-\left (-2+e^5\right ) x\right )} \, dx\\ &=2 \int \left (\frac {5 e^{5 e^x+x} \left (5+e^{5 e^x}\right ) \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2}+\frac {\left (5+e^{5 e^x}\right )^2 \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right ) \left (2 \left (1-\frac {e^5}{2}\right ) x-9 \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )-2 \left (1-\frac {e^5}{2}\right ) x \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )}{x^3 \left (9+\left (2-e^5\right ) x\right )}\right ) \, dx\\ &=2 \int \frac {\left (5+e^{5 e^x}\right )^2 \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right ) \left (2 \left (1-\frac {e^5}{2}\right ) x-9 \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )-2 \left (1-\frac {e^5}{2}\right ) x \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )}{x^3 \left (9+\left (2-e^5\right ) x\right )} \, dx+10 \int \frac {e^{5 e^x+x} \left (5+e^{5 e^x}\right ) \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2} \, dx\\ &=2 \int \frac {\left (5+e^{5 e^x}\right )^2 \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right ) \left (-\left (\left (-2+e^5\right ) x\right )+\left (-9+\left (-2+e^5\right ) x\right ) \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )}{x^3 \left (9-\left (-2+e^5\right ) x\right )} \, dx+10 \int \left (\frac {5 e^{5 e^x+x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2}+\frac {e^{10 e^x+x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2}\right ) \, dx\\ &=2 \int \left (\frac {25 \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right ) \left (2 \left (1-\frac {e^5}{2}\right ) x-9 \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )-2 \left (1-\frac {e^5}{2}\right ) x \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )}{x^3 \left (9+\left (2-e^5\right ) x\right )}+\frac {10 e^{5 e^x} \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right ) \left (2 \left (1-\frac {e^5}{2}\right ) x-9 \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )-2 \left (1-\frac {e^5}{2}\right ) x \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )}{x^3 \left (9+\left (2-e^5\right ) x\right )}+\frac {e^{10 e^x} \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right ) \left (2 \left (1-\frac {e^5}{2}\right ) x-9 \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )-2 \left (1-\frac {e^5}{2}\right ) x \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )}{x^3 \left (9+\left (2-e^5\right ) x\right )}\right ) \, dx+10 \int \frac {e^{10 e^x+x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2} \, dx+50 \int \frac {e^{5 e^x+x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2} \, dx\\ &=2 \int \frac {e^{10 e^x} \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right ) \left (2 \left (1-\frac {e^5}{2}\right ) x-9 \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )-2 \left (1-\frac {e^5}{2}\right ) x \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )}{x^3 \left (9+\left (2-e^5\right ) x\right )} \, dx+10 \int \frac {e^{10 e^x+x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2} \, dx+20 \int \frac {e^{5 e^x} \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right ) \left (2 \left (1-\frac {e^5}{2}\right ) x-9 \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )-2 \left (1-\frac {e^5}{2}\right ) x \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )}{x^3 \left (9+\left (2-e^5\right ) x\right )} \, dx+50 \int \frac {e^{5 e^x+x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2} \, dx+50 \int \frac {\log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right ) \left (2 \left (1-\frac {e^5}{2}\right ) x-9 \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )-2 \left (1-\frac {e^5}{2}\right ) x \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )}{x^3 \left (9+\left (2-e^5\right ) x\right )} \, dx\\ &=2 \int \frac {e^{10 e^x} \left (\frac {\left (-2+e^5\right ) x}{-9+\left (-2+e^5\right ) x}-\log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right ) \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^3} \, dx+10 \int \frac {e^{10 e^x+x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2} \, dx+20 \int \frac {e^{5 e^x} \left (\frac {\left (-2+e^5\right ) x}{-9+\left (-2+e^5\right ) x}-\log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right ) \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^3} \, dx+50 \int \frac {e^{5 e^x+x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2} \, dx+50 \int \frac {\log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right ) \left (-\left (\left (-2+e^5\right ) x\right )-\left (9-\left (-2+e^5\right ) x\right ) \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )}{x^3 \left (9-\left (-2+e^5\right ) x\right )} \, dx\\ &=2 \int \left (\frac {e^{10 e^x} \left (2-e^5\right ) \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2 \left (9+\left (2-e^5\right ) x\right )}-\frac {e^{10 e^x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^3}\right ) \, dx+10 \int \frac {e^{10 e^x+x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2} \, dx+20 \int \left (\frac {e^{5 e^x} \left (2-e^5\right ) \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2 \left (9+\left (2-e^5\right ) x\right )}-\frac {e^{5 e^x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^3}\right ) \, dx+50 \int \frac {e^{5 e^x+x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2} \, dx+50 \int \left (\frac {\left (2-e^5\right ) \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2 \left (9+\left (2-e^5\right ) x\right )}-\frac {\log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^3}\right ) \, dx\\ &=-\left (2 \int \frac {e^{10 e^x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^3} \, dx\right )+10 \int \frac {e^{10 e^x+x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2} \, dx-20 \int \frac {e^{5 e^x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^3} \, dx-50 \int \frac {\log ^2\left (3+\frac {1}{3} \left (2-e^5\right ) x\right )}{x^3} \, dx+50 \int \frac {e^{5 e^x+x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2} \, dx+\left (2 \left (2-e^5\right )\right ) \int \frac {e^{10 e^x} \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2 \left (9+\left (2-e^5\right ) x\right )} \, dx+\left (20 \left (2-e^5\right )\right ) \int \frac {e^{5 e^x} \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2 \left (9+\left (2-e^5\right ) x\right )} \, dx+\left (50 \left (2-e^5\right )\right ) \int \frac {\log \left (3+\frac {1}{3} \left (2-e^5\right ) x\right )}{x^2 \left (9+\left (2-e^5\right ) x\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.62, size = 277, normalized size = 8.66 \begin {gather*} \frac {1}{81} \left (\frac {810 e^{5 e^x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2}+\frac {81 e^{10 e^x} \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x^2}+25 \left (-2+e^5\right ) \left (2 \left (-2+e^5\right ) \left (\log (x)-\log \left (9+2 x-e^5 x\right )\right )+\frac {18 \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )}{x}+\left (-2+e^5\right ) \log ^2\left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )-2 \left (-2+e^5\right ) \left (\log (3) \log (x)-\text {Li}_2\left (\frac {1}{9} \left (-2+e^5\right ) x\right )\right )\right )+25 \left (2 \left (-2+e^5\right )^2 \log \left (\frac {1}{9} \left (-2+e^5\right ) x\right ) \left (-1+\log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )-\frac {\left (-9+\left (-2+e^5\right ) x\right ) \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right ) \left (-2 \left (-2+e^5\right ) x+\left (9+\left (-2+e^5\right ) x\right ) \log \left (3-\frac {1}{3} \left (-2+e^5\right ) x\right )\right )}{x^2}+2 \left (-2+e^5\right )^2 \text {Li}_2\left (1-\frac {1}{9} \left (-2+e^5\right ) x\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 59, normalized size = 1.84 \begin {gather*} \frac {e^{\left (10 \, e^{x}\right )} \log \left (-\frac {1}{3} \, x e^{5} + \frac {2}{3} \, x + 3\right )^{2} + 10 \, e^{\left (5 \, e^{x}\right )} \log \left (-\frac {1}{3} \, x e^{5} + \frac {2}{3} \, x + 3\right )^{2} + 25 \, \log \left (-\frac {1}{3} \, x e^{5} + \frac {2}{3} \, x + 3\right )^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.46, size = 141, normalized size = 4.41 \begin {gather*} \frac {e^{\left (10 \, e^{x}\right )} \log \relax (3)^{2} + 10 \, e^{\left (5 \, e^{x}\right )} \log \relax (3)^{2} - 2 \, e^{\left (10 \, e^{x}\right )} \log \relax (3) \log \left (-x e^{5} + 2 \, x + 9\right ) - 20 \, e^{\left (5 \, e^{x}\right )} \log \relax (3) \log \left (-x e^{5} + 2 \, x + 9\right ) + e^{\left (10 \, e^{x}\right )} \log \left (-x e^{5} + 2 \, x + 9\right )^{2} + 10 \, e^{\left (5 \, e^{x}\right )} \log \left (-x e^{5} + 2 \, x + 9\right )^{2} + 25 \, \log \relax (3)^{2} - 50 \, \log \relax (3) \log \left (-x e^{5} + 2 \, x + 9\right ) + 25 \, \log \left (-x e^{5} + 2 \, x + 9\right )^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.60, size = 65, normalized size = 2.03
method | result | size |
risch | \(\frac {25 \ln \left (-\frac {x \,{\mathrm e}^{5}}{3}+\frac {2 x}{3}+3\right )^{2}}{x^{2}}+\frac {\ln \left (-\frac {x \,{\mathrm e}^{5}}{3}+\frac {2 x}{3}+3\right )^{2} {\mathrm e}^{10 \,{\mathrm e}^{x}}}{x^{2}}+\frac {10 \ln \left (-\frac {x \,{\mathrm e}^{5}}{3}+\frac {2 x}{3}+3\right )^{2} {\mathrm e}^{5 \,{\mathrm e}^{x}}}{x^{2}}\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.70, size = 93, normalized size = 2.91 \begin {gather*} \frac {e^{\left (10 \, e^{x}\right )} \log \relax (3)^{2} + 10 \, e^{\left (5 \, e^{x}\right )} \log \relax (3)^{2} + {\left (e^{\left (10 \, e^{x}\right )} + 10 \, e^{\left (5 \, e^{x}\right )} + 25\right )} \log \left (-x {\left (e^{5} - 2\right )} + 9\right )^{2} + 25 \, \log \relax (3)^{2} - 2 \, {\left (e^{\left (10 \, e^{x}\right )} \log \relax (3) + 10 \, e^{\left (5 \, e^{x}\right )} \log \relax (3) + 25 \, \log \relax (3)\right )} \log \left (-x {\left (e^{5} - 2\right )} + 9\right )}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.46, size = 39, normalized size = 1.22 \begin {gather*} {\ln \left (\frac {2\,x}{3}-\frac {x\,{\mathrm {e}}^5}{3}+3\right )}^2\,\left (\frac {25}{x^2}+\frac {10\,{\mathrm {e}}^{5\,{\mathrm {e}}^x}}{x^2}+\frac {{\mathrm {e}}^{10\,{\mathrm {e}}^x}}{x^2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.78, size = 80, normalized size = 2.50 \begin {gather*} \frac {25 \log {\left (- \frac {x e^{5}}{3} + \frac {2 x}{3} + 3 \right )}^{2}}{x^{2}} + \frac {x^{2} e^{10 e^{x}} \log {\left (- \frac {x e^{5}}{3} + \frac {2 x}{3} + 3 \right )}^{2} + 10 x^{2} e^{5 e^{x}} \log {\left (- \frac {x e^{5}}{3} + \frac {2 x}{3} + 3 \right )}^{2}}{x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________