Optimal. Leaf size=22 \[ x+\frac {x}{16 \left (\frac {1}{x^2}+\frac {2}{x}\right ) \log ^4(x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x^2-8 x^3+\left (3 x^2+4 x^3\right ) \log (x)+\left (16+64 x+64 x^2\right ) \log ^5(x)}{\left (16+64 x+64 x^2\right ) \log ^5(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 x^2-8 x^3+\left (3 x^2+4 x^3\right ) \log (x)+\left (16+64 x+64 x^2\right ) \log ^5(x)}{16 (1+2 x)^2 \log ^5(x)} \, dx\\ &=\frac {1}{16} \int \frac {-4 x^2-8 x^3+\left (3 x^2+4 x^3\right ) \log (x)+\left (16+64 x+64 x^2\right ) \log ^5(x)}{(1+2 x)^2 \log ^5(x)} \, dx\\ &=\frac {1}{16} \int \left (16-\frac {4 x^2}{(1+2 x) \log ^5(x)}+\frac {x^2 (3+4 x)}{(1+2 x)^2 \log ^4(x)}\right ) \, dx\\ &=x+\frac {1}{16} \int \frac {x^2 (3+4 x)}{(1+2 x)^2 \log ^4(x)} \, dx-\frac {1}{4} \int \frac {x^2}{(1+2 x) \log ^5(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.40, size = 20, normalized size = 0.91 \begin {gather*} x+\frac {x^3}{16 (1+2 x) \log ^4(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 30, normalized size = 1.36 \begin {gather*} \frac {16 \, {\left (2 \, x^{2} + x\right )} \log \relax (x)^{4} + x^{3}}{16 \, {\left (2 \, x + 1\right )} \log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 21, normalized size = 0.95 \begin {gather*} \frac {x^{3}}{16 \, {\left (2 \, x \log \relax (x)^{4} + \log \relax (x)^{4}\right )}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.60, size = 19, normalized size = 0.86
method | result | size |
risch | \(x +\frac {x^{3}}{16 \left (2 x +1\right ) \ln \relax (x )^{4}}\) | \(19\) |
norman | \(\frac {x \ln \relax (x )^{4}+\frac {x^{3}}{16}+2 x^{2} \ln \relax (x )^{4}}{\left (2 x +1\right ) \ln \relax (x )^{4}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 30, normalized size = 1.36 \begin {gather*} \frac {16 \, {\left (2 \, x^{2} + x\right )} \log \relax (x)^{4} + x^{3}}{16 \, {\left (2 \, x + 1\right )} \log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.60, size = 18, normalized size = 0.82 \begin {gather*} \frac {x^3}{16\,{\ln \relax (x)}^4\,\left (2\,x+1\right )}+\frac {x\,\left (32\,x+16\right )}{16\,\left (2\,x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.64 \begin {gather*} \frac {x^{3}}{\left (32 x + 16\right ) \log {\relax (x )}^{4}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________