Optimal. Leaf size=28 \[ \frac {1}{4} \log \left (4-x \left (\frac {1}{25} e^{2-2 e^x+2 x}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 46, normalized size of antiderivative = 1.64, number of steps used = 1, number of rules used = 1, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.017, Rules used = {6684} \begin {gather*} \frac {1}{4} \log \left (-e^{-2 e^x} \left (-25 e^{2 e^x} x^2-e^{2 x+2} x+100 e^{2 e^x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \log \left (-e^{-2 e^x} \left (100 e^{2 e^x}-e^{2+2 x} x-25 e^{2 e^x} x^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.10, size = 35, normalized size = 1.25 \begin {gather*} \frac {1}{4} \left (-2 e^x+\log \left (e^{2+2 x} x+25 e^{2 e^x} \left (-4+x^2\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 39, normalized size = 1.39 \begin {gather*} \frac {1}{4} \, \log \relax (x) + \frac {1}{4} \, \log \left (\frac {25 \, x^{2} + x e^{\left (2 \, {\left ({\left (x + 1\right )} e^{2} - e^{\left (x + 2\right )}\right )} e^{\left (-2\right )}\right )} - 100}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 34, normalized size = 1.21 \begin {gather*} -\frac {1}{2} \, e^{x} + \frac {1}{4} \, \log \left (25 \, x^{2} e^{\left (2 \, e^{x}\right )} + x e^{\left (2 \, x + 2\right )} - 100 \, e^{\left (2 \, e^{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 27, normalized size = 0.96
method | result | size |
norman | \(\frac {\ln \left (4 x \,{\mathrm e}^{2} {\mathrm e}^{-2 \,{\mathrm e}^{x}+2 x}+100 x^{2}-400\right )}{4}\) | \(27\) |
risch | \(\frac {\ln \relax (x )}{4}+\frac {\ln \left ({\mathrm e}^{-2 \,{\mathrm e}^{x}+2 x}+\frac {25 \left (x^{2}-4\right ) {\mathrm e}^{-2}}{x}\right )}{4}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 50, normalized size = 1.79 \begin {gather*} -\frac {1}{2} \, e^{x} + \frac {1}{4} \, \log \left (x + 2\right ) + \frac {1}{4} \, \log \left (x - 2\right ) + \frac {1}{4} \, \log \left (\frac {x e^{\left (2 \, x + 2\right )} + 25 \, {\left (x^{2} - 4\right )} e^{\left (2 \, e^{x}\right )}}{25 \, {\left (x^{2} - 4\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.49, size = 22, normalized size = 0.79 \begin {gather*} \frac {\ln \left (x^2+\frac {x\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^2\,{\mathrm {e}}^{-2\,{\mathrm {e}}^x}}{25}-4\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 29, normalized size = 1.04 \begin {gather*} \frac {\log {\relax (x )}}{4} + \frac {\log {\left (e^{2 x - 2 e^{x}} + \frac {25 x^{2} - 100}{x e^{2}} \right )}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________