Optimal. Leaf size=22 \[ \frac {\log (5)}{2+\log \left (e^{\frac {2 e^8}{(2+4 x)^2}}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 24, normalized size of antiderivative = 1.09, number of steps used = 4, number of rules used = 3, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {12, 1680, 261} \begin {gather*} -\frac {e^8 \log (5)}{2 \left (4 (2 x+1)^2+e^8\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 261
Rule 1680
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (e^8 \log (5)\right ) \int \frac {8+16 x}{16+e^{16}+128 x+384 x^2+512 x^3+256 x^4+e^8 \left (8+32 x+32 x^2\right )} \, dx\\ &=\left (e^8 \log (5)\right ) \operatorname {Subst}\left (\int \frac {16 x}{\left (e^8+16 x^2\right )^2} \, dx,x,\frac {1}{2}+x\right )\\ &=\left (16 e^8 \log (5)\right ) \operatorname {Subst}\left (\int \frac {x}{\left (e^8+16 x^2\right )^2} \, dx,x,\frac {1}{2}+x\right )\\ &=-\frac {e^8 \log (5)}{2 \left (e^8+4 (1+2 x)^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 24, normalized size = 1.09 \begin {gather*} -\frac {e^8 \log (5)}{2 \left (e^8+4 (1+2 x)^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 20, normalized size = 0.91 \begin {gather*} -\frac {e^{8} \log \relax (5)}{2 \, {\left (16 \, x^{2} + 16 \, x + e^{8} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 21, normalized size = 0.95
method | result | size |
risch | \(-\frac {{\mathrm e}^{8} \ln \relax (5)}{2 \left ({\mathrm e}^{8}+16 x^{2}+16 x +4\right )}\) | \(21\) |
gosper | \(-\frac {{\mathrm e}^{8} \ln \relax (5)}{2 \left ({\mathrm e}^{8}+16 x^{2}+16 x +4\right )}\) | \(25\) |
norman | \(-\frac {{\mathrm e}^{8} \ln \relax (5)}{2 \left ({\mathrm e}^{8}+16 x^{2}+16 x +4\right )}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 20, normalized size = 0.91 \begin {gather*} -\frac {e^{8} \log \relax (5)}{2 \, {\left (16 \, x^{2} + 16 \, x + e^{8} + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 22, normalized size = 1.00 \begin {gather*} -\frac {{\mathrm {e}}^8\,\ln \relax (5)}{2\,\left (16\,x^2+16\,x+{\mathrm {e}}^8+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 22, normalized size = 1.00 \begin {gather*} - \frac {e^{8} \log {\relax (5 )}}{32 x^{2} + 32 x + 8 + 2 e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________