Optimal. Leaf size=28 \[ x \log (4) \left (-x+\frac {1}{4} (1+\log (3)) \left (-x+(3-\log (x))^2\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.05, antiderivative size = 67, normalized size of antiderivative = 2.39, number of steps used = 5, number of rules used = 3, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {12, 2295, 2296} \begin {gather*} \frac {1}{4} x (1+\log (3)) \log (4) \log ^2(x)-\frac {\log (4) (-10 x+(3-2 x) \log (3)+3)^2}{8 (10+\log (9))}-\frac {3}{2} x (1+\log (3)) \log (4) \log (x)+\frac {3}{2} x (1+\log (3)) \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2295
Rule 2296
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \left ((3-10 x+(3-2 x) \log (3)) \log (4)+(-4-4 \log (3)) \log (4) \log (x)+(1+\log (3)) \log (4) \log ^2(x)\right ) \, dx\\ &=-\frac {(3-10 x+(3-2 x) \log (3))^2 \log (4)}{8 (10+\log (9))}+\frac {1}{4} ((1+\log (3)) \log (4)) \int \log ^2(x) \, dx-((1+\log (3)) \log (4)) \int \log (x) \, dx\\ &=x (1+\log (3)) \log (4)-\frac {(3-10 x+(3-2 x) \log (3))^2 \log (4)}{8 (10+\log (9))}-x (1+\log (3)) \log (4) \log (x)+\frac {1}{4} x (1+\log (3)) \log (4) \log ^2(x)-\frac {1}{2} ((1+\log (3)) \log (4)) \int \log (x) \, dx\\ &=\frac {3}{2} x (1+\log (3)) \log (4)-\frac {(3-10 x+(3-2 x) \log (3))^2 \log (4)}{8 (10+\log (9))}-\frac {3}{2} x (1+\log (3)) \log (4) \log (x)+\frac {1}{4} x (1+\log (3)) \log (4) \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 43, normalized size = 1.54 \begin {gather*} \frac {1}{4} \log (4) \left (-\frac {1}{2} x^2 (10+\log (9))+x (9+\log (19683))-6 x (1+\log (3)) \log (x)+x (1+\log (3)) \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 59, normalized size = 2.11 \begin {gather*} -\frac {1}{2} \, {\left (x^{2} - 9 \, x\right )} \log \relax (3) \log \relax (2) + \frac {1}{2} \, {\left (x \log \relax (3) \log \relax (2) + x \log \relax (2)\right )} \log \relax (x)^{2} - \frac {1}{2} \, {\left (5 \, x^{2} - 9 \, x\right )} \log \relax (2) - 3 \, {\left (x \log \relax (3) \log \relax (2) + x \log \relax (2)\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 63, normalized size = 2.25 \begin {gather*} \frac {1}{2} \, {\left (x \log \relax (x)^{2} - 2 \, x \log \relax (x) + 2 \, x\right )} {\left (\log \relax (3) + 1\right )} \log \relax (2) - 2 \, {\left (x \log \relax (x) - x\right )} {\left (\log \relax (3) + 1\right )} \log \relax (2) - \frac {1}{2} \, {\left (5 \, x^{2} + {\left (x^{2} - 3 \, x\right )} \log \relax (3) - 3 \, x\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 62, normalized size = 2.21
method | result | size |
norman | \(\left (-\frac {\ln \relax (2) \ln \relax (3)}{2}-\frac {5 \ln \relax (2)}{2}\right ) x^{2}+\left (\frac {9 \ln \relax (2) \ln \relax (3)}{2}+\frac {9 \ln \relax (2)}{2}\right ) x +\left (-3 \ln \relax (2) \ln \relax (3)-3 \ln \relax (2)\right ) x \ln \relax (x )+\left (\frac {\ln \relax (2) \ln \relax (3)}{2}+\frac {\ln \relax (2)}{2}\right ) x \ln \relax (x )^{2}\) | \(62\) |
default | \(-\frac {\ln \relax (2) \ln \relax (3) x^{2}}{2}+\frac {9 x \ln \relax (2) \ln \relax (3)}{2}-\frac {5 x^{2} \ln \relax (2)}{2}+\frac {9 x \ln \relax (2)}{2}-3 \ln \relax (2) \ln \relax (3) \ln \relax (x ) x -3 x \ln \relax (2) \ln \relax (x )+\frac {\ln \relax (2) \ln \relax (3) \ln \relax (x )^{2} x}{2}+\frac {\ln \relax (2) \ln \relax (x )^{2} x}{2}\) | \(66\) |
risch | \(-\frac {\ln \relax (2) \ln \relax (3) x^{2}}{2}+\frac {9 x \ln \relax (2) \ln \relax (3)}{2}-\frac {5 x^{2} \ln \relax (2)}{2}+\frac {9 x \ln \relax (2)}{2}-3 \ln \relax (2) \ln \relax (3) \ln \relax (x ) x -3 x \ln \relax (2) \ln \relax (x )+\frac {\ln \relax (2) \ln \relax (3) \ln \relax (x )^{2} x}{2}+\frac {\ln \relax (2) \ln \relax (x )^{2} x}{2}\) | \(66\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 59, normalized size = 2.11 \begin {gather*} \frac {1}{2} \, {\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x {\left (\log \relax (3) + 1\right )} \log \relax (2) - 2 \, {\left (x \log \relax (x) - x\right )} {\left (\log \relax (3) + 1\right )} \log \relax (2) - \frac {1}{2} \, {\left (5 \, x^{2} + {\left (x^{2} - 3 \, x\right )} \log \relax (3) - 3 \, x\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.48, size = 55, normalized size = 1.96 \begin {gather*} x\,\left (\frac {9\,\ln \relax (2)\,\left (\ln \relax (3)+1\right )}{2}-\frac {\ln \relax (x)\,\left (6\,\ln \relax (2)+6\,\ln \relax (2)\,\ln \relax (3)\right )}{2}+\frac {\ln \relax (2)\,{\ln \relax (x)}^2\,\left (\ln \relax (3)+1\right )}{2}\right )-x^2\,\left (\frac {\ln \left (32\right )}{2}+\frac {\ln \relax (2)\,\ln \relax (3)}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 82, normalized size = 2.93 \begin {gather*} x^{2} \left (- \frac {5 \log {\relax (2 )}}{2} - \frac {\log {\relax (2 )} \log {\relax (3 )}}{2}\right ) + x \left (\frac {9 \log {\relax (2 )}}{2} + \frac {9 \log {\relax (2 )} \log {\relax (3 )}}{2}\right ) + \left (\frac {x \log {\relax (2 )}}{2} + \frac {x \log {\relax (2 )} \log {\relax (3 )}}{2}\right ) \log {\relax (x )}^{2} + \left (- 3 x \log {\relax (2 )} \log {\relax (3 )} - 3 x \log {\relax (2 )}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________