Optimal. Leaf size=32 \[ -2+\frac {1}{3} \left (-x^2+\frac {x+\log \left (2 e^{\frac {1}{x}+x}\right )}{x}\right )+\log \left (x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 29, normalized size of antiderivative = 0.91, number of steps used = 8, number of rules used = 3, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {12, 14, 2551} \begin {gather*} -\frac {x^2}{3}+2 \log (x)+\frac {\log \left (2 e^{x+\frac {1}{x}}\right )}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2551
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-1+7 x^2-2 x^4-x \log \left (2 e^{\frac {1+x^2}{x}}\right )}{x^3} \, dx\\ &=\frac {1}{3} \int \left (\frac {-1+7 x^2-2 x^4}{x^3}-\frac {\log \left (2 e^{\frac {1}{x}+x}\right )}{x^2}\right ) \, dx\\ &=\frac {1}{3} \int \frac {-1+7 x^2-2 x^4}{x^3} \, dx-\frac {1}{3} \int \frac {\log \left (2 e^{\frac {1}{x}+x}\right )}{x^2} \, dx\\ &=\frac {\log \left (2 e^{\frac {1}{x}+x}\right )}{3 x}+\frac {1}{3} \int \left (-\frac {1}{x^3}+\frac {7}{x}-2 x\right ) \, dx-\frac {1}{3} \int \frac {-1+x^2}{x^3} \, dx\\ &=\frac {1}{6 x^2}-\frac {x^2}{3}+\frac {\log \left (2 e^{\frac {1}{x}+x}\right )}{3 x}+\frac {7 \log (x)}{3}-\frac {1}{3} \int \left (-\frac {1}{x^3}+\frac {1}{x}\right ) \, dx\\ &=-\frac {x^2}{3}+\frac {\log \left (2 e^{\frac {1}{x}+x}\right )}{3 x}+2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 29, normalized size = 0.91 \begin {gather*} -\frac {x^2}{3}+\frac {\log \left (2 e^{\frac {1}{x}+x}\right )}{3 x}+2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 22, normalized size = 0.69 \begin {gather*} -\frac {x^{4} - 6 \, x^{2} \log \relax (x) - x \log \relax (2) - 1}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 22, normalized size = 0.69 \begin {gather*} -\frac {1}{3} \, x^{2} + \frac {x \log \relax (2) + 1}{3 \, x^{2}} + 2 \, \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 29, normalized size = 0.91
method | result | size |
default | \(\frac {\ln \left (2 \,{\mathrm e}^{\frac {x^{2}+1}{x}}\right )}{3 x}+2 \ln \relax (x )-\frac {x^{2}}{3}\) | \(29\) |
norman | \(\frac {-\frac {x^{4}}{3}+\frac {x \ln \left (2 \,{\mathrm e}^{\frac {x^{2}+1}{x}}\right )}{3}}{x^{2}}+2 \ln \relax (x )\) | \(32\) |
risch | \(\frac {\ln \left ({\mathrm e}^{\frac {x^{2}+1}{x}}\right )}{3 x}+\frac {-2 x^{3}+12 x \ln \relax (x )+2 \ln \relax (2)}{6 x}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 30, normalized size = 0.94 \begin {gather*} -\frac {1}{3} \, x^{2} + \frac {\log \left (2 \, e^{\left (x + \frac {1}{x}\right )}\right )}{3 \, x} - \frac {1}{6} \, \log \left (x^{2}\right ) + \frac {7}{3} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.96, size = 21, normalized size = 0.66 \begin {gather*} 2\,\ln \relax (x)-\frac {x^2}{3}+\frac {\frac {x\,\ln \relax (2)}{3}+\frac {1}{3}}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 22, normalized size = 0.69 \begin {gather*} - \frac {x^{2}}{3} + 2 \log {\relax (x )} - \frac {- x \log {\relax (2 )} - 1}{3 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________