Optimal. Leaf size=31 \[ 4+\frac {3 x^2 \left (-x+5 \left (\frac {1}{x}+x\right )\right ) (3-\log (x))^2}{e^3}+\log (x) \]
________________________________________________________________________________________
Rubi [B] time = 0.13, antiderivative size = 73, normalized size of antiderivative = 2.35, number of steps used = 13, number of rules used = 8, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.178, Rules used = {12, 14, 2313, 2330, 2296, 2295, 2305, 2304} \begin {gather*} \frac {108 x^3}{e^3}+\frac {12 x^3 \log ^2(x)}{e^3}-\frac {8 x^3 \log (x)}{e^3}-\frac {4 \left (16 x^3+15 x\right ) \log (x)}{e^3}+\frac {135 x}{e^3}+\frac {15 x \log ^2(x)}{e^3}-\frac {30 x \log (x)}{e^3}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2295
Rule 2296
Rule 2304
Rule 2305
Rule 2313
Rule 2330
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^3+45 x+252 x^3+\left (-60 x-192 x^3\right ) \log (x)+\left (15 x+36 x^3\right ) \log ^2(x)}{x} \, dx}{e^3}\\ &=\frac {\int \left (\frac {e^3+45 x+252 x^3}{x}-12 \left (5+16 x^2\right ) \log (x)+3 \left (5+12 x^2\right ) \log ^2(x)\right ) \, dx}{e^3}\\ &=\frac {\int \frac {e^3+45 x+252 x^3}{x} \, dx}{e^3}+\frac {3 \int \left (5+12 x^2\right ) \log ^2(x) \, dx}{e^3}-\frac {12 \int \left (5+16 x^2\right ) \log (x) \, dx}{e^3}\\ &=-\frac {4 \left (15 x+16 x^3\right ) \log (x)}{e^3}+\frac {\int \left (45+\frac {e^3}{x}+252 x^2\right ) \, dx}{e^3}+\frac {3 \int \left (5 \log ^2(x)+12 x^2 \log ^2(x)\right ) \, dx}{e^3}+\frac {12 \int \left (5+\frac {16 x^2}{3}\right ) \, dx}{e^3}\\ &=\frac {105 x}{e^3}+\frac {316 x^3}{3 e^3}+\log (x)-\frac {4 \left (15 x+16 x^3\right ) \log (x)}{e^3}+\frac {15 \int \log ^2(x) \, dx}{e^3}+\frac {36 \int x^2 \log ^2(x) \, dx}{e^3}\\ &=\frac {105 x}{e^3}+\frac {316 x^3}{3 e^3}+\log (x)-\frac {4 \left (15 x+16 x^3\right ) \log (x)}{e^3}+\frac {15 x \log ^2(x)}{e^3}+\frac {12 x^3 \log ^2(x)}{e^3}-\frac {24 \int x^2 \log (x) \, dx}{e^3}-\frac {30 \int \log (x) \, dx}{e^3}\\ &=\frac {135 x}{e^3}+\frac {108 x^3}{e^3}+\log (x)-\frac {30 x \log (x)}{e^3}-\frac {8 x^3 \log (x)}{e^3}-\frac {4 \left (15 x+16 x^3\right ) \log (x)}{e^3}+\frac {15 x \log ^2(x)}{e^3}+\frac {12 x^3 \log ^2(x)}{e^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 47, normalized size = 1.52 \begin {gather*} \frac {135 x+108 x^3+e^3 \log (x)-90 x \log (x)-72 x^3 \log (x)+15 x \log ^2(x)+12 x^3 \log ^2(x)}{e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 44, normalized size = 1.42 \begin {gather*} {\left (108 \, x^{3} + 3 \, {\left (4 \, x^{3} + 5 \, x\right )} \log \relax (x)^{2} - {\left (72 \, x^{3} + 90 \, x - e^{3}\right )} \log \relax (x) + 135 \, x\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 45, normalized size = 1.45 \begin {gather*} {\left (12 \, x^{3} \log \relax (x)^{2} - 72 \, x^{3} \log \relax (x) + 108 \, x^{3} + 15 \, x \log \relax (x)^{2} - 90 \, x \log \relax (x) + e^{3} \log \relax (x) + 135 \, x\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 46, normalized size = 1.48
method | result | size |
risch | \({\mathrm e}^{-3} \left (12 x^{3}+15 x \right ) \ln \relax (x )^{2}+{\mathrm e}^{-3} \left (-72 x^{3}-90 x \right ) \ln \relax (x )+108 \,{\mathrm e}^{-3} x^{3}+135 x \,{\mathrm e}^{-3}+\ln \relax (x )\) | \(46\) |
default | \({\mathrm e}^{-3} \left (12 x^{3} \ln \relax (x )^{2}-72 x^{3} \ln \relax (x )+108 x^{3}+15 x \ln \relax (x )^{2}-90 x \ln \relax (x )+135 x +\ln \relax (x ) {\mathrm e}^{3}\right )\) | \(48\) |
norman | \(\ln \relax (x )+135 x \,{\mathrm e}^{-3}+108 \,{\mathrm e}^{-3} x^{3}-90 x \,{\mathrm e}^{-3} \ln \relax (x )+15 x \,{\mathrm e}^{-3} \ln \relax (x )^{2}-72 \,{\mathrm e}^{-3} x^{3} \ln \relax (x )+12 \,{\mathrm e}^{-3} x^{3} \ln \relax (x )^{2}\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 61, normalized size = 1.97 \begin {gather*} \frac {1}{3} \, {\left (4 \, {\left (9 \, \log \relax (x)^{2} - 6 \, \log \relax (x) + 2\right )} x^{3} - 192 \, x^{3} \log \relax (x) + 316 \, x^{3} + 45 \, {\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x - 180 \, x \log \relax (x) + 3 \, e^{3} \log \relax (x) + 315 \, x\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.78, size = 51, normalized size = 1.65 \begin {gather*} 12\,{\mathrm {e}}^{-3}\,x^3\,{\ln \relax (x)}^2-72\,{\mathrm {e}}^{-3}\,x^3\,\ln \relax (x)+108\,{\mathrm {e}}^{-3}\,x^3+15\,{\mathrm {e}}^{-3}\,x\,{\ln \relax (x)}^2-90\,{\mathrm {e}}^{-3}\,x\,\ln \relax (x)+135\,{\mathrm {e}}^{-3}\,x+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 51, normalized size = 1.65 \begin {gather*} \frac {\left (- 72 x^{3} - 90 x\right ) \log {\relax (x )}}{e^{3}} + \frac {\left (12 x^{3} + 15 x\right ) \log {\relax (x )}^{2}}{e^{3}} + \frac {108 x^{3} + 135 x + e^{3} \log {\relax (x )}}{e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________