Optimal. Leaf size=24 \[ e^{\frac {e}{\log \left (\frac {3}{e^8}+e^x\right )}} \left (24+e^2 x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 26, normalized size of antiderivative = 1.08, number of steps used = 1, number of rules used = 1, integrand size = 85, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.012, Rules used = {2288} \begin {gather*} \left (e^2 x+24\right ) e^{\frac {e}{\log \left (\frac {e^{x+8}+3}{e^8}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{\frac {e}{\log \left (\frac {3+e^{8+x}}{e^8}\right )}} \left (24+e^2 x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 24, normalized size = 1.00 \begin {gather*} e^{\frac {e}{-8+\log \left (3+e^{8+x}\right )}} \left (24+e^2 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 26, normalized size = 1.08 \begin {gather*} {\left (x e^{2} + 24\right )} e^{\left (\frac {e}{\log \left ({\left (3 \, e^{2} + e^{\left (x + 10\right )}\right )} e^{\left (-10\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 24, normalized size = 1.00
method | result | size |
risch | \(\left (24+{\mathrm e}^{2} x \right ) {\mathrm e}^{\frac {{\mathrm e}}{\ln \left (\left ({\mathrm e}^{x +8}+3\right ) {\mathrm e}^{-8}\right )}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x e^{\left (\frac {e}{\log \left (e^{\left (x + 8\right )} + 3\right ) - 8} + 2\right )} + 24 \, e^{\left (\frac {e}{\log \left (e^{\left (x + 8\right )} + 3\right ) - 8}\right )} + \int e^{\left (\frac {e}{\log \left (e^{\left (x + 8\right )} + 3\right ) - 8} + 2\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {\mathrm {e}}{\ln \left ({\mathrm {e}}^{-8}\,\left ({\mathrm {e}}^8\,{\mathrm {e}}^x+3\right )\right )}}\,\left ({\ln \left ({\mathrm {e}}^{-8}\,\left ({\mathrm {e}}^8\,{\mathrm {e}}^x+3\right )\right )}^2\,\left ({\mathrm {e}}^{x+10}+3\,{\mathrm {e}}^2\right )-{\mathrm {e}}^{x+8}\,\left (24\,\mathrm {e}+x\,{\mathrm {e}}^3\right )\right )}{{\ln \left ({\mathrm {e}}^{-8}\,\left ({\mathrm {e}}^8\,{\mathrm {e}}^x+3\right )\right )}^2\,\left ({\mathrm {e}}^{x+8}+3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________