Optimal. Leaf size=25 \[ \log \left (\log (2)+\log \left (9+\left (\frac {1}{1-\frac {2 x}{5}}+\frac {\log (x)}{2}\right )^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 13.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-500-80 x^2+\left (-250+100 x-40 x^2+16 x^3\right ) \log (x)}{\left (-5000 x+5600 x^2-2160 x^3+288 x^4\right ) \log (2)+\left (-500 x+400 x^2-80 x^3\right ) \log (2) \log (x)+\left (-125 x+150 x^2-60 x^3+8 x^4\right ) \log (2) \log ^2(x)+\left (-5000 x+5600 x^2-2160 x^3+288 x^4+\left (-500 x+400 x^2-80 x^3\right ) \log (x)+\left (-125 x+150 x^2-60 x^3+8 x^4\right ) \log ^2(x)\right ) \log \left (\frac {1000-720 x+144 x^2+(100-40 x) \log (x)+\left (25-20 x+4 x^2\right ) \log ^2(x)}{100-80 x+16 x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (25+4 x^2\right ) (10-(-5+2 x) \log (x))}{(5-2 x) x \left (8 \left (125-90 x+18 x^2\right )-20 (-5+2 x) \log (x)+(5-2 x)^2 \log ^2(x)\right ) \left (\log (2)+\log \left (\frac {2 \left (125-90 x+18 x^2\right )}{(5-2 x)^2}+\frac {5 \log (x)}{5-2 x}+\frac {\log ^2(x)}{4}\right )\right )} \, dx\\ &=2 \int \frac {\left (25+4 x^2\right ) (10-(-5+2 x) \log (x))}{(5-2 x) x \left (8 \left (125-90 x+18 x^2\right )-20 (-5+2 x) \log (x)+(5-2 x)^2 \log ^2(x)\right ) \left (\log (2)+\log \left (\frac {2 \left (125-90 x+18 x^2\right )}{(5-2 x)^2}+\frac {5 \log (x)}{5-2 x}+\frac {\log ^2(x)}{4}\right )\right )} \, dx\\ &=2 \int \left (\frac {2 (-10-5 \log (x)+2 x \log (x))}{\left (1000-720 x+144 x^2+100 \log (x)-40 x \log (x)+25 \log ^2(x)-20 x \log ^2(x)+4 x^2 \log ^2(x)\right ) \left (\log (2)+\log \left (\frac {2 \left (125-90 x+18 x^2\right )}{(5-2 x)^2}+\frac {5 \log (x)}{5-2 x}+\frac {\log ^2(x)}{4}\right )\right )}-\frac {5 (-10-5 \log (x)+2 x \log (x))}{x \left (1000-720 x+144 x^2+100 \log (x)-40 x \log (x)+25 \log ^2(x)-20 x \log ^2(x)+4 x^2 \log ^2(x)\right ) \left (\log (2)+\log \left (\frac {2 \left (125-90 x+18 x^2\right )}{(5-2 x)^2}+\frac {5 \log (x)}{5-2 x}+\frac {\log ^2(x)}{4}\right )\right )}+\frac {20 (-10-5 \log (x)+2 x \log (x))}{(-5+2 x) \left (1000-720 x+144 x^2+100 \log (x)-40 x \log (x)+25 \log ^2(x)-20 x \log ^2(x)+4 x^2 \log ^2(x)\right ) \left (\log (2)+\log \left (\frac {2 \left (125-90 x+18 x^2\right )}{(5-2 x)^2}+\frac {5 \log (x)}{5-2 x}+\frac {\log ^2(x)}{4}\right )\right )}\right ) \, dx\\ &=4 \int \frac {-10-5 \log (x)+2 x \log (x)}{\left (1000-720 x+144 x^2+100 \log (x)-40 x \log (x)+25 \log ^2(x)-20 x \log ^2(x)+4 x^2 \log ^2(x)\right ) \left (\log (2)+\log \left (\frac {2 \left (125-90 x+18 x^2\right )}{(5-2 x)^2}+\frac {5 \log (x)}{5-2 x}+\frac {\log ^2(x)}{4}\right )\right )} \, dx-10 \int \frac {-10-5 \log (x)+2 x \log (x)}{x \left (1000-720 x+144 x^2+100 \log (x)-40 x \log (x)+25 \log ^2(x)-20 x \log ^2(x)+4 x^2 \log ^2(x)\right ) \left (\log (2)+\log \left (\frac {2 \left (125-90 x+18 x^2\right )}{(5-2 x)^2}+\frac {5 \log (x)}{5-2 x}+\frac {\log ^2(x)}{4}\right )\right )} \, dx+40 \int \frac {-10-5 \log (x)+2 x \log (x)}{(-5+2 x) \left (1000-720 x+144 x^2+100 \log (x)-40 x \log (x)+25 \log ^2(x)-20 x \log ^2(x)+4 x^2 \log ^2(x)\right ) \left (\log (2)+\log \left (\frac {2 \left (125-90 x+18 x^2\right )}{(5-2 x)^2}+\frac {5 \log (x)}{5-2 x}+\frac {\log ^2(x)}{4}\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 44, normalized size = 1.76 \begin {gather*} \log \left (\log (2)+\log \left (\frac {2 \left (125-90 x+18 x^2\right )}{(5-2 x)^2}+\frac {5 \log (x)}{5-2 x}+\frac {\log ^2(x)}{4}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 53, normalized size = 2.12 \begin {gather*} \log \left (\log \relax (2) + \log \left (\frac {{\left (4 \, x^{2} - 20 \, x + 25\right )} \log \relax (x)^{2} + 144 \, x^{2} - 20 \, {\left (2 \, x - 5\right )} \log \relax (x) - 720 \, x + 1000}{4 \, {\left (4 \, x^{2} - 20 \, x + 25\right )}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.21, size = 61, normalized size = 2.44 \begin {gather*} \log \left (-\log \relax (2) + \log \left (4 \, x^{2} \log \relax (x)^{2} - 20 \, x \log \relax (x)^{2} + 144 \, x^{2} - 40 \, x \log \relax (x) + 25 \, \log \relax (x)^{2} - 720 \, x + 100 \, \log \relax (x) + 1000\right ) - \log \left (4 \, x^{2} - 20 \, x + 25\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.72, size = 406, normalized size = 16.24
method | result | size |
risch | \(\ln \left (\ln \left (\left (\ln \relax (x )^{2}+36\right ) x^{2}+\left (-5 \ln \relax (x )^{2}-10 \ln \relax (x )-180\right ) x +\frac {25 \ln \relax (x )^{2}}{4}+25 \ln \relax (x )+250\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (\frac {i}{\left (x -\frac {5}{2}\right )^{2}}\right ) \mathrm {csgn}\left (i \left (\left (\ln \relax (x )^{2}+36\right ) x^{2}+\left (-5 \ln \relax (x )^{2}-10 \ln \relax (x )-180\right ) x +\frac {25 \ln \relax (x )^{2}}{4}+25 \ln \relax (x )+250\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )^{2}+36\right ) x^{2}+\left (-5 \ln \relax (x )^{2}-10 \ln \relax (x )-180\right ) x +\frac {25 \ln \relax (x )^{2}}{4}+25 \ln \relax (x )+250\right )}{\left (x -\frac {5}{2}\right )^{2}}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{\left (x -\frac {5}{2}\right )^{2}}\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )^{2}+36\right ) x^{2}+\left (-5 \ln \relax (x )^{2}-10 \ln \relax (x )-180\right ) x +\frac {25 \ln \relax (x )^{2}}{4}+25 \ln \relax (x )+250\right )}{\left (x -\frac {5}{2}\right )^{2}}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (\left (\ln \relax (x )^{2}+36\right ) x^{2}+\left (-5 \ln \relax (x )^{2}-10 \ln \relax (x )-180\right ) x +\frac {25 \ln \relax (x )^{2}}{4}+25 \ln \relax (x )+250\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )^{2}+36\right ) x^{2}+\left (-5 \ln \relax (x )^{2}-10 \ln \relax (x )-180\right ) x +\frac {25 \ln \relax (x )^{2}}{4}+25 \ln \relax (x )+250\right )}{\left (x -\frac {5}{2}\right )^{2}}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )^{2}+36\right ) x^{2}+\left (-5 \ln \relax (x )^{2}-10 \ln \relax (x )-180\right ) x +\frac {25 \ln \relax (x )^{2}}{4}+25 \ln \relax (x )+250\right )}{\left (x -\frac {5}{2}\right )^{2}}\right )^{3}-\pi \mathrm {csgn}\left (i \left (x -\frac {5}{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x -\frac {5}{2}\right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left (x -\frac {5}{2}\right )\right ) \mathrm {csgn}\left (i \left (x -\frac {5}{2}\right )^{2}\right )^{2}-\pi \mathrm {csgn}\left (i \left (x -\frac {5}{2}\right )^{2}\right )^{3}-2 i \ln \relax (2)-4 i \ln \left (x -\frac {5}{2}\right )\right )}{2}\right )\) | \(406\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 49, normalized size = 1.96 \begin {gather*} \log \left (-\log \relax (2) + \log \left ({\left (4 \, x^{2} - 20 \, x + 25\right )} \log \relax (x)^{2} + 144 \, x^{2} - 20 \, {\left (2 \, x - 5\right )} \log \relax (x) - 720 \, x + 1000\right ) - 2 \, \log \left (2 \, x - 5\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.88, size = 50, normalized size = 2.00 \begin {gather*} \ln \left (\ln \left (\frac {2\,\left ({\ln \relax (x)}^2\,\left (4\,x^2-20\,x+25\right )-720\,x-\ln \relax (x)\,\left (40\,x-100\right )+144\,x^2+1000\right )}{16\,x^2-80\,x+100}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 3.01, size = 49, normalized size = 1.96 \begin {gather*} \log {\left (\log {\left (\frac {144 x^{2} - 720 x + \left (100 - 40 x\right ) \log {\relax (x )} + \left (4 x^{2} - 20 x + 25\right ) \log {\relax (x )}^{2} + 1000}{16 x^{2} - 80 x + 100} \right )} + \log {\relax (2 )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________