Optimal. Leaf size=23 \[ 4 e^{-\frac {8}{\left (4+e^{\frac {x^2}{5}}\right ) x}} x \]
________________________________________________________________________________________
Rubi [F] time = 4.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} \left (640+320 x+20 e^{\frac {2 x^2}{5}} x+e^{\frac {x^2}{5}} \left (160+160 x+64 x^2\right )\right )}{80 x+40 e^{\frac {x^2}{5}} x+5 e^{\frac {2 x^2}{5}} x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} \left (640+320 x+20 e^{\frac {2 x^2}{5}} x+e^{\frac {x^2}{5}} \left (160+160 x+64 x^2\right )\right )}{5 \left (4+e^{\frac {x^2}{5}}\right )^2 x} \, dx\\ &=\frac {1}{5} \int \frac {e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} \left (640+320 x+20 e^{\frac {2 x^2}{5}} x+e^{\frac {x^2}{5}} \left (160+160 x+64 x^2\right )\right )}{\left (4+e^{\frac {x^2}{5}}\right )^2 x} \, dx\\ &=\frac {1}{5} \int \left (20 e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}}-\frac {256 e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} x}{\left (4+e^{\frac {x^2}{5}}\right )^2}+\frac {32 e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} \left (5+2 x^2\right )}{\left (4+e^{\frac {x^2}{5}}\right ) x}\right ) \, dx\\ &=4 \int e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} \, dx+\frac {32}{5} \int \frac {e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} \left (5+2 x^2\right )}{\left (4+e^{\frac {x^2}{5}}\right ) x} \, dx-\frac {256}{5} \int \frac {e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} x}{\left (4+e^{\frac {x^2}{5}}\right )^2} \, dx\\ &=4 \int e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} \, dx+\frac {32}{5} \int \left (\frac {5 e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}}}{\left (4+e^{\frac {x^2}{5}}\right ) x}+\frac {2 e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} x}{4+e^{\frac {x^2}{5}}}\right ) \, dx-\frac {256}{5} \int \frac {e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} x}{\left (4+e^{\frac {x^2}{5}}\right )^2} \, dx\\ &=4 \int e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} \, dx+\frac {64}{5} \int \frac {e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} x}{4+e^{\frac {x^2}{5}}} \, dx+32 \int \frac {e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}}}{\left (4+e^{\frac {x^2}{5}}\right ) x} \, dx-\frac {256}{5} \int \frac {e^{-\frac {8}{4 x+e^{\frac {x^2}{5}} x}} x}{\left (4+e^{\frac {x^2}{5}}\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.55, size = 23, normalized size = 1.00 \begin {gather*} 4 e^{-\frac {8}{\left (4+e^{\frac {x^2}{5}}\right ) x}} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 20, normalized size = 0.87 \begin {gather*} 4 \, x e^{\left (-\frac {8}{x e^{\left (\frac {1}{5} \, x^{2}\right )} + 4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 20, normalized size = 0.87 \begin {gather*} 4 \, x e^{\left (-\frac {8}{x e^{\left (\frac {1}{5} \, x^{2}\right )} + 4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 20, normalized size = 0.87
method | result | size |
risch | \(4 x \,{\mathrm e}^{-\frac {8}{\left (4+{\mathrm e}^{\frac {x^{2}}{5}}\right ) x}}\) | \(20\) |
norman | \(\frac {16 x \,{\mathrm e}^{-\frac {8}{x \,{\mathrm e}^{\frac {x^{2}}{5}}+4 x}}+4 x \,{\mathrm e}^{\frac {x^{2}}{5}} {\mathrm e}^{-\frac {8}{x \,{\mathrm e}^{\frac {x^{2}}{5}}+4 x}}}{4+{\mathrm e}^{\frac {x^{2}}{5}}}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {4}{5} \, \int \frac {{\left (5 \, x e^{\left (\frac {2}{5} \, x^{2}\right )} + 8 \, {\left (2 \, x^{2} + 5 \, x + 5\right )} e^{\left (\frac {1}{5} \, x^{2}\right )} + 80 \, x + 160\right )} e^{\left (-\frac {8}{x e^{\left (\frac {1}{5} \, x^{2}\right )} + 4 \, x}\right )}}{x e^{\left (\frac {2}{5} \, x^{2}\right )} + 8 \, x e^{\left (\frac {1}{5} \, x^{2}\right )} + 16 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.16, size = 20, normalized size = 0.87 \begin {gather*} 4\,x\,{\mathrm {e}}^{-\frac {8}{4\,x+x\,{\mathrm {e}}^{\frac {x^2}{5}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 39.96, size = 17, normalized size = 0.74 \begin {gather*} 4 x e^{- \frac {8}{x e^{\frac {x^{2}}{5}} + 4 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________