Optimal. Leaf size=20 \[ x \left (e^{5 x}+\frac {3}{x}-e^x \log (4)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 40, normalized size of antiderivative = 2.00, number of steps used = 5, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {2176, 2194} \begin {gather*} -\frac {e^{5 x}}{5}+\frac {1}{5} e^{5 x} (5 x+1)-e^x (x+1) \log (4)+e^x \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log (4) \int e^x (-1-x) \, dx+\int e^{5 x} (1+5 x) \, dx\\ &=\frac {1}{5} e^{5 x} (1+5 x)-e^x (1+x) \log (4)+\log (4) \int e^x \, dx-\int e^{5 x} \, dx\\ &=-\frac {e^{5 x}}{5}+\frac {1}{5} e^{5 x} (1+5 x)+e^x \log (4)-e^x (1+x) \log (4)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.80 \begin {gather*} e^{5 x} x-e^x x \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 14, normalized size = 0.70 \begin {gather*} -2 \, x e^{x} \log \relax (2) + x e^{\left (5 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 14, normalized size = 0.70 \begin {gather*} -2 \, x e^{x} \log \relax (2) + x e^{\left (5 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.75
method | result | size |
default | \(x \,{\mathrm e}^{5 x}-2 x \ln \relax (2) {\mathrm e}^{x}\) | \(15\) |
norman | \(x \,{\mathrm e}^{5 x}-2 x \ln \relax (2) {\mathrm e}^{x}\) | \(15\) |
risch | \(x \,{\mathrm e}^{5 x}-2 x \ln \relax (2) {\mathrm e}^{x}\) | \(15\) |
meijerg | \(\frac {{\mathrm e}^{5 x}}{5}-\frac {\left (2-10 x \right ) {\mathrm e}^{5 x}}{10}+2 \left (1-{\mathrm e}^{x}\right ) \ln \relax (2)-2 \ln \relax (2) \left (1-\frac {\left (-2 x +2\right ) {\mathrm e}^{x}}{2}\right )\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 20, normalized size = 1.00 \begin {gather*} x e^{\left (5 \, x\right )} - 2 \, {\left ({\left (x - 1\right )} e^{x} + e^{x}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.13, size = 13, normalized size = 0.65 \begin {gather*} x\,{\mathrm {e}}^x\,\left ({\mathrm {e}}^{4\,x}-2\,\ln \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 15, normalized size = 0.75 \begin {gather*} x e^{5 x} - 2 x e^{x} \log {\relax (2 )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________