Optimal. Leaf size=24 \[ x \left (4 e^{\frac {x}{-3+3 (-254-2 x)^2+x}}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {74919334050 x+2360474820 x^2+27882962 x^3+146352 x^4+288 x^5+e^{\frac {x}{193545+3049 x+12 x^2}} \left (149838668100+4721723820 x+55765924 x^2+292656 x^3+576 x^4\right )}{37459667025+1180237410 x+13941481 x^2+73176 x^3+144 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 x+\frac {4 e^{\frac {x}{193545+3049 x+12 x^2}} \left (37459667025+1180430955 x+13941481 x^2+73164 x^3+144 x^4\right )}{\left (193545+3049 x+12 x^2\right )^2}\right ) \, dx\\ &=x^2+4 \int \frac {e^{\frac {x}{193545+3049 x+12 x^2}} \left (37459667025+1180430955 x+13941481 x^2+73164 x^3+144 x^4\right )}{\left (193545+3049 x+12 x^2\right )^2} \, dx\\ &=x^2+4 \int \left (e^{\frac {x}{193545+3049 x+12 x^2}}+\frac {152881 e^{\frac {x}{193545+3049 x+12 x^2}}}{79 (391+3 x)^2}-\frac {391 e^{\frac {x}{193545+3049 x+12 x^2}}}{79 (391+3 x)}-\frac {245025 e^{\frac {x}{193545+3049 x+12 x^2}}}{79 (495+4 x)^2}+\frac {495 e^{\frac {x}{193545+3049 x+12 x^2}}}{79 (495+4 x)}\right ) \, dx\\ &=x^2+4 \int e^{\frac {x}{193545+3049 x+12 x^2}} \, dx-\frac {1564}{79} \int \frac {e^{\frac {x}{193545+3049 x+12 x^2}}}{391+3 x} \, dx+\frac {1980}{79} \int \frac {e^{\frac {x}{193545+3049 x+12 x^2}}}{495+4 x} \, dx+\frac {611524}{79} \int \frac {e^{\frac {x}{193545+3049 x+12 x^2}}}{(391+3 x)^2} \, dx-\frac {980100}{79} \int \frac {e^{\frac {x}{193545+3049 x+12 x^2}}}{(495+4 x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 23, normalized size = 0.96 \begin {gather*} 4 e^{\frac {x}{193545+3049 x+12 x^2}} x+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.18, size = 22, normalized size = 0.92 \begin {gather*} x^{2} + 4 \, x e^{\left (\frac {x}{12 \, x^{2} + 3049 \, x + 193545}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 22, normalized size = 0.92 \begin {gather*} x^{2} + 4 \, x e^{\left (\frac {x}{12 \, x^{2} + 3049 \, x + 193545}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.31, size = 25, normalized size = 1.04
method | result | size |
risch | \(x^{2}+4 \,{\mathrm e}^{\frac {x}{\left (3 x +391\right ) \left (4 x +495\right )}} x\) | \(25\) |
norman | \(\frac {-\frac {196706235 x}{4}+3049 x^{3}+12 x^{4}+774180 \,{\mathrm e}^{\frac {x}{12 x^{2}+3049 x +193545}} x +12196 \,{\mathrm e}^{\frac {x}{12 x^{2}+3049 x +193545}} x^{2}+48 \,{\mathrm e}^{\frac {x}{12 x^{2}+3049 x +193545}} x^{3}-\frac {12486555675}{4}}{12 x^{2}+3049 x +193545}\) | \(87\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 122, normalized size = 5.08 \begin {gather*} x^{2} + 4 \, x e^{\left (-\frac {495}{79 \, {\left (4 \, x + 495\right )}} + \frac {391}{79 \, {\left (3 \, x + 391\right )}}\right )} + \frac {16579595834289949 \, x + 2099267057378616345}{449352 \, {\left (12 \, x^{2} + 3049 \, x + 193545\right )}} - \frac {3049 \, {\left (10846402941841 \, x + 1374257227948605\right )}}{224676 \, {\left (12 \, x^{2} + 3049 \, x + 193545\right )}} + \frac {13941481 \, {\left (7100453269 \, x + 900239922945\right )}}{449352 \, {\left (12 \, x^{2} + 3049 \, x + 193545\right )}} - \frac {196706235 \, {\left (4651321 \, x + 590118705\right )}}{6241 \, {\left (12 \, x^{2} + 3049 \, x + 193545\right )}} + \frac {74919334050 \, {\left (3049 \, x + 387090\right )}}{6241 \, {\left (12 \, x^{2} + 3049 \, x + 193545\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.35, size = 22, normalized size = 0.92 \begin {gather*} x^2+4\,x\,{\mathrm {e}}^{\frac {x}{12\,x^2+3049\,x+193545}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 19, normalized size = 0.79 \begin {gather*} x^{2} + 4 x e^{\frac {x}{12 x^{2} + 3049 x + 193545}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________