Optimal. Leaf size=24 \[ \frac {1}{4} \left (86+x-\log ^2(5)-\log (x)+\log \left (\log ^2(-5+x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.32, antiderivative size = 21, normalized size of antiderivative = 0.88, number of steps used = 8, number of rules used = 6, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {1593, 6742, 43, 2390, 2302, 29} \begin {gather*} \frac {x}{4}-\frac {\log (x)}{4}+\frac {1}{2} \log (\log (x-5)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 43
Rule 1593
Rule 2302
Rule 2390
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x+\left (5-6 x+x^2\right ) \log (-5+x)}{x (-20+4 x) \log (-5+x)} \, dx\\ &=\int \left (\frac {-1+x}{4 x}+\frac {1}{2 (-5+x) \log (-5+x)}\right ) \, dx\\ &=\frac {1}{4} \int \frac {-1+x}{x} \, dx+\frac {1}{2} \int \frac {1}{(-5+x) \log (-5+x)} \, dx\\ &=\frac {1}{4} \int \left (1-\frac {1}{x}\right ) \, dx+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,-5+x\right )\\ &=\frac {x}{4}-\frac {\log (x)}{4}+\frac {1}{2} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (-5+x)\right )\\ &=\frac {x}{4}-\frac {\log (x)}{4}+\frac {1}{2} \log (\log (-5+x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 17, normalized size = 0.71 \begin {gather*} \frac {1}{4} (x-\log (x)+2 \log (\log (-5+x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 15, normalized size = 0.62 \begin {gather*} \frac {1}{4} \, x - \frac {1}{4} \, \log \relax (x) + \frac {1}{2} \, \log \left (\log \left (x - 5\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 15, normalized size = 0.62 \begin {gather*} \frac {1}{4} \, x - \frac {1}{4} \, \log \relax (x) + \frac {1}{2} \, \log \left (\log \left (x - 5\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 16, normalized size = 0.67
method | result | size |
norman | \(\frac {x}{4}-\frac {\ln \relax (x )}{4}+\frac {\ln \left (\ln \left (x -5\right )\right )}{2}\) | \(16\) |
risch | \(\frac {x}{4}-\frac {\ln \relax (x )}{4}+\frac {\ln \left (\ln \left (x -5\right )\right )}{2}\) | \(16\) |
derivativedivides | \(\frac {x}{4}-\frac {5}{4}-\frac {\ln \relax (x )}{4}+\frac {\ln \left (\ln \left (x -5\right )\right )}{2}\) | \(17\) |
default | \(\frac {x}{4}-\frac {5}{4}-\frac {\ln \relax (x )}{4}+\frac {\ln \left (\ln \left (x -5\right )\right )}{2}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 15, normalized size = 0.62 \begin {gather*} \frac {1}{4} \, x - \frac {1}{4} \, \log \relax (x) + \frac {1}{2} \, \log \left (\log \left (x - 5\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.84, size = 15, normalized size = 0.62 \begin {gather*} \frac {x}{4}+\frac {\ln \left (\ln \left (x-5\right )\right )}{2}-\frac {\ln \relax (x)}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 15, normalized size = 0.62 \begin {gather*} \frac {x}{4} - \frac {\log {\relax (x )}}{4} + \frac {\log {\left (\log {\left (x - 5 \right )} \right )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________