Optimal. Leaf size=21 \[ \frac {5}{(-4+(-8+x) (-x+\log (2)))^2+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 7.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5+320 x-720 x^2+240 x^3-20 x^4+\left (680 x-320 x^2+30 x^3\right ) \log (2)+\left (80 x-10 x^2\right ) \log ^2(2)}{256 x-2048 x^2+6400 x^3-9728 x^4+7264 x^5-2432 x^6+400 x^7-32 x^8+x^9+\left (2048 x-12544 x^2+27648 x^3-25792 x^4+9344 x^5-1584 x^6+128 x^7-4 x^8\right ) \log (2)+\left (6144 x-26112 x^2+33888 x^3-13440 x^4+2352 x^5-192 x^6+6 x^7\right ) \log ^2(2)+\left (8192 x-19456 x^2+8576 x^3-1552 x^4+128 x^5-4 x^6\right ) \log ^3(2)+\left (4096 x-2048 x^2+384 x^3-32 x^4+x^5\right ) \log ^4(2)+\left (32 x-128 x^2+144 x^3-32 x^4+2 x^5+\left (128 x-272 x^2+64 x^3-4 x^4\right ) \log (2)+\left (128 x-32 x^2+2 x^3\right ) \log ^2(2)\right ) \log (x)+x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (-1-4 x^4+6 x^3 (8+\log (2))+8 x (8+\log (2)) (1+2 \log (2))-2 x^2 \left (72+32 \log (2)+\log ^2(2)\right )\right )}{x \left (\left (4+x^2-x (8+\log (2))+\log (256)\right )^2+\log (x)\right )^2} \, dx\\ &=5 \int \frac {-1-4 x^4+6 x^3 (8+\log (2))+8 x (8+\log (2)) (1+2 \log (2))-2 x^2 \left (72+32 \log (2)+\log ^2(2)\right )}{x \left (\left (4+x^2-x (8+\log (2))+\log (256)\right )^2+\log (x)\right )^2} \, dx\\ &=5 \int \frac {-1-4 x^4+6 x^3 (8+\log (2))-2 x^2 \left (72+32 \log (2)+\log ^2(2)\right )+8 x (8+\log (2)) (1+\log (4))}{x \left (\left (4+x^2-x (8+\log (2))+\log (256)\right )^2+\log (x)\right )^2} \, dx\\ &=5 \int \left (-\frac {1}{x \left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2}-\frac {4 x^3}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2}+\frac {6 x^2 (8+\log (2))}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2}+\frac {2 x \left (-72-32 \log (2)-\log ^2(2)\right )}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2}+\frac {8 (8+\log (2)) (1+\log (4))}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2}\right ) \, dx\\ &=-\left (5 \int \frac {1}{x \left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2} \, dx\right )-20 \int \frac {x^3}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2} \, dx+(30 (8+\log (2))) \int \frac {x^2}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2} \, dx-\left (10 \left (72+32 \log (2)+\log ^2(2)\right )\right ) \int \frac {x}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2} \, dx+(40 (8+\log (2)) (1+\log (4))) \int \frac {1}{\left (x^4-16 x^3 \left (1+\frac {\log (2)}{8}\right )+72 x^2 \left (1+\frac {1}{72} \log (2) (32+\log (2))\right )+16 (1+(1+\log (2)) \log (16))-64 x \left (1+\frac {1}{8} \log (2) \left (1+\frac {(8+\log (2)) \log (256)}{\log (16)}\right )\right )+\log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 5.15, size = 113, normalized size = 5.38 \begin {gather*} -\frac {5 \left (-1-4 x^4+6 x^3 (8+\log (2))-2 x^2 \left (72+32 \log (2)+\log ^2(2)\right )+8 x \left (8+17 \log (2)+2 \log ^2(2)\right )\right )}{\left (1+4 x^4-6 x^3 (8+\log (2))-2 x (8+\log (2)) (4+\log (256))+2 x^2 \left (72+\log ^2(2)+2 \log (65536)\right )\right ) \left (\left (4+x^2-x (8+\log (2))+\log (256)\right )^2+\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 54, normalized size = 2.57 \begin {gather*} \frac {5}{x^{4} - 16 \, x^{3} + {\left (x^{2} - 16 \, x + 64\right )} \log \relax (2)^{2} + 72 \, x^{2} - 2 \, {\left (x^{3} - 16 \, x^{2} + 68 \, x - 32\right )} \log \relax (2) - 64 \, x + \log \relax (x) + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 68, normalized size = 3.24 \begin {gather*} \frac {5}{x^{4} - 2 \, x^{3} \log \relax (2) + x^{2} \log \relax (2)^{2} - 16 \, x^{3} + 32 \, x^{2} \log \relax (2) - 16 \, x \log \relax (2)^{2} + 72 \, x^{2} - 136 \, x \log \relax (2) + 64 \, \log \relax (2)^{2} - 64 \, x + 64 \, \log \relax (2) + \log \relax (x) + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 69, normalized size = 3.29
method | result | size |
risch | \(\frac {5}{x^{2} \ln \relax (2)^{2}-2 x^{3} \ln \relax (2)+x^{4}-16 x \ln \relax (2)^{2}+32 x^{2} \ln \relax (2)-16 x^{3}+64 \ln \relax (2)^{2}-136 x \ln \relax (2)+72 x^{2}+\ln \relax (x )+64 \ln \relax (2)-64 x +16}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 59, normalized size = 2.81 \begin {gather*} \frac {5}{x^{4} - 2 \, x^{3} {\left (\log \relax (2) + 8\right )} + {\left (\log \relax (2)^{2} + 32 \, \log \relax (2) + 72\right )} x^{2} - 8 \, {\left (2 \, \log \relax (2)^{2} + 17 \, \log \relax (2) + 8\right )} x + 64 \, \log \relax (2)^{2} + 64 \, \log \relax (2) + \log \relax (x) + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int \frac {320\,x+\ln \relax (2)\,\left (30\,x^3-320\,x^2+680\,x\right )+{\ln \relax (2)}^2\,\left (80\,x-10\,x^2\right )-720\,x^2+240\,x^3-20\,x^4-5}{256\,x+x\,{\ln \relax (x)}^2+{\ln \relax (2)}^3\,\left (-4\,x^6+128\,x^5-1552\,x^4+8576\,x^3-19456\,x^2+8192\,x\right )+\ln \relax (2)\,\left (-4\,x^8+128\,x^7-1584\,x^6+9344\,x^5-25792\,x^4+27648\,x^3-12544\,x^2+2048\,x\right )+{\ln \relax (2)}^2\,\left (6\,x^7-192\,x^6+2352\,x^5-13440\,x^4+33888\,x^3-26112\,x^2+6144\,x\right )+\ln \relax (x)\,\left (32\,x+\ln \relax (2)\,\left (-4\,x^4+64\,x^3-272\,x^2+128\,x\right )+{\ln \relax (2)}^2\,\left (2\,x^3-32\,x^2+128\,x\right )-128\,x^2+144\,x^3-32\,x^4+2\,x^5\right )-2048\,x^2+6400\,x^3-9728\,x^4+7264\,x^5-2432\,x^6+400\,x^7-32\,x^8+x^9+{\ln \relax (2)}^4\,\left (x^5-32\,x^4+384\,x^3-2048\,x^2+4096\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 75, normalized size = 3.57 \begin {gather*} \frac {5}{x^{4} - 16 x^{3} - 2 x^{3} \log {\relax (2 )} + x^{2} \log {\relax (2 )}^{2} + 32 x^{2} \log {\relax (2 )} + 72 x^{2} - 136 x \log {\relax (2 )} - 64 x - 16 x \log {\relax (2 )}^{2} + \log {\relax (x )} + 16 + 64 \log {\relax (2 )}^{2} + 64 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________