Optimal. Leaf size=26 \[ \frac {\left (2+\frac {1}{x}\right )^2}{\log ^2\left (\frac {4 e^x x}{-e^x+x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x^2+8 x^3+8 x^4+e^x \left (-2-8 x-8 x^2\right )+\left (e^x (-2-4 x)+2 x+4 x^2\right ) \log \left (-\frac {4 e^x x}{e^x-x}\right )}{\left (e^x x^3-x^4\right ) \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 (1+2 x) \left ((1+2 x) \left (-e^x+x^2\right )+\left (-e^x+x\right ) \log \left (-\frac {4 e^x x}{e^x-x}\right )\right )}{\left (e^x-x\right ) x^3 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx\\ &=2 \int \frac {(1+2 x) \left ((1+2 x) \left (-e^x+x^2\right )+\left (-e^x+x\right ) \log \left (-\frac {4 e^x x}{e^x-x}\right )\right )}{\left (e^x-x\right ) x^3 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx\\ &=2 \int \left (\frac {(-1+x) (1+2 x)^2}{\left (e^x-x\right ) x^2 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )}-\frac {(1+2 x) \left (1+2 x+\log \left (-\frac {4 e^x x}{e^x-x}\right )\right )}{x^3 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )}\right ) \, dx\\ &=2 \int \frac {(-1+x) (1+2 x)^2}{\left (e^x-x\right ) x^2 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx-2 \int \frac {(1+2 x) \left (1+2 x+\log \left (-\frac {4 e^x x}{e^x-x}\right )\right )}{x^3 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx\\ &=2 \int \left (-\frac {1}{\left (e^x-x\right ) x^2 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )}-\frac {3}{\left (e^x-x\right ) x \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )}+\frac {4 x}{\left (e^x-x\right ) \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )}\right ) \, dx-2 \int \left (\frac {(1+2 x)^2}{x^3 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )}+\frac {1+2 x}{x^3 \log ^2\left (-\frac {4 e^x x}{e^x-x}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {1}{\left (e^x-x\right ) x^2 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx\right )-2 \int \frac {(1+2 x)^2}{x^3 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx-2 \int \frac {1+2 x}{x^3 \log ^2\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx-6 \int \frac {1}{\left (e^x-x\right ) x \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx+8 \int \frac {x}{\left (e^x-x\right ) \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx\\ &=-\left (2 \int \left (\frac {1}{x^3 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )}+\frac {4}{x^2 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )}+\frac {4}{x \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )}\right ) \, dx\right )-2 \int \left (\frac {1}{x^3 \log ^2\left (-\frac {4 e^x x}{e^x-x}\right )}+\frac {2}{x^2 \log ^2\left (-\frac {4 e^x x}{e^x-x}\right )}\right ) \, dx-2 \int \frac {1}{\left (e^x-x\right ) x^2 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx-6 \int \frac {1}{\left (e^x-x\right ) x \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx+8 \int \frac {x}{\left (e^x-x\right ) \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx\\ &=-\left (2 \int \frac {1}{x^3 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx\right )-2 \int \frac {1}{\left (e^x-x\right ) x^2 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx-2 \int \frac {1}{x^3 \log ^2\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx-4 \int \frac {1}{x^2 \log ^2\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx-6 \int \frac {1}{\left (e^x-x\right ) x \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx-8 \int \frac {1}{x^2 \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx-8 \int \frac {1}{x \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx+8 \int \frac {x}{\left (e^x-x\right ) \log ^3\left (-\frac {4 e^x x}{e^x-x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 29, normalized size = 1.12 \begin {gather*} \frac {(1+2 x)^2}{x^2 \log ^2\left (-\frac {4 e^x x}{e^x-x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.12, size = 30, normalized size = 1.15 \begin {gather*} \frac {4 \, x^{2} + 4 \, x + 1}{x^{2} \log \left (\frac {4 \, x e^{x}}{x - e^{x}}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.24, size = 267, normalized size = 10.27
method | result | size |
risch | \(-\frac {4 \left (4 x^{2}+4 x +1\right )}{x^{2} \left (\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{{\mathrm e}^{x}-x}\right ) \mathrm {csgn}\left (\frac {i x \,{\mathrm e}^{x}}{{\mathrm e}^{x}-x}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x \,{\mathrm e}^{x}}{{\mathrm e}^{x}-x}\right )^{2}+\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}-x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{{\mathrm e}^{x}-x}\right )-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{{\mathrm e}^{x}-x}\right )^{2}+\pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x}-x}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{{\mathrm e}^{x}-x}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{{\mathrm e}^{x}-x}\right )^{3}+\pi \,\mathrm {csgn}\left (\frac {i {\mathrm e}^{x}}{{\mathrm e}^{x}-x}\right ) \mathrm {csgn}\left (\frac {i x \,{\mathrm e}^{x}}{{\mathrm e}^{x}-x}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i x \,{\mathrm e}^{x}}{{\mathrm e}^{x}-x}\right )^{3}-2 i \ln \left (x -{\mathrm e}^{x}\right )+4 i \ln \relax (2)+2 i \ln \left ({\mathrm e}^{x}\right )+2 i \ln \relax (x )\right )^{2}}\) | \(267\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 95, normalized size = 3.65 \begin {gather*} \frac {4 \, x^{2} + 4 \, x + 1}{x^{4} + 4 \, x^{3} \log \relax (2) + 4 \, x^{2} \log \relax (2)^{2} + x^{2} \log \left (x - e^{x}\right )^{2} + x^{2} \log \relax (x)^{2} - 2 \, {\left (x^{3} + 2 \, x^{2} \log \relax (2) + x^{2} \log \relax (x)\right )} \log \left (x - e^{x}\right ) + 2 \, {\left (x^{3} + 2 \, x^{2} \log \relax (2)\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.39, size = 377, normalized size = 14.50 \begin {gather*} \frac {\frac {\left (x-{\mathrm {e}}^x\right )\,\left (2\,x+1\right )}{x^2\,\left ({\mathrm {e}}^x-x^2\right )}+\frac {\ln \left (\frac {4\,x\,{\mathrm {e}}^x}{x-{\mathrm {e}}^x}\right )\,\left (x-{\mathrm {e}}^x\right )\,\left (2\,{\mathrm {e}}^{2\,x}+2\,x\,{\mathrm {e}}^{2\,x}-5\,x^2\,{\mathrm {e}}^x-7\,x^3\,{\mathrm {e}}^x+2\,x^4\,{\mathrm {e}}^x-x\,{\mathrm {e}}^x+3\,x^3+4\,x^4\right )}{x^2\,{\left ({\mathrm {e}}^x-x^2\right )}^3}}{\ln \left (\frac {4\,x\,{\mathrm {e}}^x}{x-{\mathrm {e}}^x}\right )}+\frac {\frac {{\left (2\,x+1\right )}^2}{x^2}-\frac {\ln \left (\frac {4\,x\,{\mathrm {e}}^x}{x-{\mathrm {e}}^x}\right )\,\left (x-{\mathrm {e}}^x\right )\,\left (2\,x+1\right )}{x^2\,\left ({\mathrm {e}}^x-x^2\right )}}{{\ln \left (\frac {4\,x\,{\mathrm {e}}^x}{x-{\mathrm {e}}^x}\right )}^2}+\frac {2\,x+2}{x^2}+\frac {-4\,x^6+18\,x^5-23\,x^4+4\,x^3+3\,x^2+2\,x}{\left (2\,x-x^2\right )\,\left ({\mathrm {e}}^{2\,x}-2\,x^2\,{\mathrm {e}}^x+x^4\right )}-\frac {2\,x^4-5\,x^3+x^2-x+6}{\left (2\,x-x^2\right )\,\left ({\mathrm {e}}^x-x^2\right )}-\frac {2\,x^8-11\,x^7+20\,x^6-11\,x^5-4\,x^4+4\,x^3}{\left (2\,x-x^2\right )\,\left ({\mathrm {e}}^{3\,x}+3\,x^4\,{\mathrm {e}}^x-3\,x^2\,{\mathrm {e}}^{2\,x}-x^6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 29, normalized size = 1.12 \begin {gather*} \frac {4 x^{2} + 4 x + 1}{x^{2} \log {\left (- \frac {4 x e^{x}}{- x + e^{x}} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________