3.95.46
Optimal. Leaf size=30
________________________________________________________________________________________
Rubi [A] time = 0.42, antiderivative size = 29, normalized size of antiderivative = 0.97,
number of steps used = 3, number of rules used = 3, integrand size = 103, = 0.029, Rules used
= {6688, 12, 6686}
Antiderivative was successfully verified.
[In]
Int[(112 - 288*x + 144*x^2 - 240*x^4 - 12*Log[x])/(49 - 434*x + 1465*x^2 - 2400*x^3 + 2040*x^4 - 696*x^5 - 600
*x^6 + 864*x^7 - 288*x^8 + 144*x^10 + (42*x - 186*x^2 + 216*x^3 - 72*x^4 + 72*x^6)*Log[x] + 9*x^2*Log[x]^2),x]
[Out]
4/(7 - 31*x + 36*x^2 - 12*x^3 + 12*x^5 + 3*x*Log[x])
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 6686
Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /; !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 29, normalized size = 0.97
Antiderivative was successfully verified.
[In]
Integrate[(112 - 288*x + 144*x^2 - 240*x^4 - 12*Log[x])/(49 - 434*x + 1465*x^2 - 2400*x^3 + 2040*x^4 - 696*x^5
- 600*x^6 + 864*x^7 - 288*x^8 + 144*x^10 + (42*x - 186*x^2 + 216*x^3 - 72*x^4 + 72*x^6)*Log[x] + 9*x^2*Log[x]
^2),x]
[Out]
4/(7 - 31*x + 36*x^2 - 12*x^3 + 12*x^5 + 3*x*Log[x])
________________________________________________________________________________________
fricas [A] time = 0.56, size = 29, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-12*log(x)-240*x^4+144*x^2-288*x+112)/(9*x^2*log(x)^2+(72*x^6-72*x^4+216*x^3-186*x^2+42*x)*log(x)+1
44*x^10-288*x^8+864*x^7-600*x^6-696*x^5+2040*x^4-2400*x^3+1465*x^2-434*x+49),x, algorithm="fricas")
[Out]
4/(12*x^5 - 12*x^3 + 36*x^2 + 3*x*log(x) - 31*x + 7)
________________________________________________________________________________________
giac [A] time = 0.16, size = 29, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-12*log(x)-240*x^4+144*x^2-288*x+112)/(9*x^2*log(x)^2+(72*x^6-72*x^4+216*x^3-186*x^2+42*x)*log(x)+1
44*x^10-288*x^8+864*x^7-600*x^6-696*x^5+2040*x^4-2400*x^3+1465*x^2-434*x+49),x, algorithm="giac")
[Out]
4/(12*x^5 - 12*x^3 + 36*x^2 + 3*x*log(x) - 31*x + 7)
________________________________________________________________________________________
maple [A] time = 0.03, size = 30, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-12*ln(x)-240*x^4+144*x^2-288*x+112)/(9*x^2*ln(x)^2+(72*x^6-72*x^4+216*x^3-186*x^2+42*x)*ln(x)+144*x^10-2
88*x^8+864*x^7-600*x^6-696*x^5+2040*x^4-2400*x^3+1465*x^2-434*x+49),x,method=_RETURNVERBOSE)
[Out]
4/(12*x^5-12*x^3+3*x*ln(x)+36*x^2-31*x+7)
________________________________________________________________________________________
maxima [A] time = 0.37, size = 29, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-12*log(x)-240*x^4+144*x^2-288*x+112)/(9*x^2*log(x)^2+(72*x^6-72*x^4+216*x^3-186*x^2+42*x)*log(x)+1
44*x^10-288*x^8+864*x^7-600*x^6-696*x^5+2040*x^4-2400*x^3+1465*x^2-434*x+49),x, algorithm="maxima")
[Out]
4/(12*x^5 - 12*x^3 + 36*x^2 + 3*x*log(x) - 31*x + 7)
________________________________________________________________________________________
mupad [B] time = 7.66, size = 29, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(288*x + 12*log(x) - 144*x^2 + 240*x^4 - 112)/(log(x)*(42*x - 186*x^2 + 216*x^3 - 72*x^4 + 72*x^6) - 434*
x + 9*x^2*log(x)^2 + 1465*x^2 - 2400*x^3 + 2040*x^4 - 696*x^5 - 600*x^6 + 864*x^7 - 288*x^8 + 144*x^10 + 49),x
)
[Out]
4/(x*(3*log(x) - 31) + 36*x^2 - 12*x^3 + 12*x^5 + 7)
________________________________________________________________________________________
sympy [A] time = 0.22, size = 27, normalized size = 0.90
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-12*ln(x)-240*x**4+144*x**2-288*x+112)/(9*x**2*ln(x)**2+(72*x**6-72*x**4+216*x**3-186*x**2+42*x)*ln
(x)+144*x**10-288*x**8+864*x**7-600*x**6-696*x**5+2040*x**4-2400*x**3+1465*x**2-434*x+49),x)
[Out]
4/(12*x**5 - 12*x**3 + 36*x**2 + 3*x*log(x) - 31*x + 7)
________________________________________________________________________________________