Optimal. Leaf size=24 \[ x^2-e^{-6-x-x^2} (3+x) \log (\log (5)) \]
________________________________________________________________________________________
Rubi [A] time = 0.27, antiderivative size = 39, normalized size of antiderivative = 1.62, number of steps used = 15, number of rules used = 5, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {6742, 2234, 2205, 2240, 2241} \begin {gather*} x^2-e^{-x^2-x-6} x \log (\log (5))-3 e^{-x^2-x-6} \log (\log (5)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2205
Rule 2234
Rule 2240
Rule 2241
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 x+e^{-6-x-x^2} \left (2+7 x+2 x^2\right ) \log (\log (5))\right ) \, dx\\ &=x^2+\log (\log (5)) \int e^{-6-x-x^2} \left (2+7 x+2 x^2\right ) \, dx\\ &=x^2+\log (\log (5)) \int \left (2 e^{-6-x-x^2}+7 e^{-6-x-x^2} x+2 e^{-6-x-x^2} x^2\right ) \, dx\\ &=x^2+(2 \log (\log (5))) \int e^{-6-x-x^2} \, dx+(2 \log (\log (5))) \int e^{-6-x-x^2} x^2 \, dx+(7 \log (\log (5))) \int e^{-6-x-x^2} x \, dx\\ &=x^2-\frac {7}{2} e^{-6-x-x^2} \log (\log (5))-e^{-6-x-x^2} x \log (\log (5))+\log (\log (5)) \int e^{-6-x-x^2} \, dx-\log (\log (5)) \int e^{-6-x-x^2} x \, dx-\frac {1}{2} (7 \log (\log (5))) \int e^{-6-x-x^2} \, dx+\frac {(2 \log (\log (5))) \int e^{-\frac {1}{4} (-1-2 x)^2} \, dx}{e^{23/4}}\\ &=x^2-3 e^{-6-x-x^2} \log (\log (5))-e^{-6-x-x^2} x \log (\log (5))-\frac {\sqrt {\pi } \text {erf}\left (\frac {1}{2} (-1-2 x)\right ) \log (\log (5))}{e^{23/4}}+\frac {1}{2} \log (\log (5)) \int e^{-6-x-x^2} \, dx+\frac {\log (\log (5)) \int e^{-\frac {1}{4} (-1-2 x)^2} \, dx}{e^{23/4}}-\frac {(7 \log (\log (5))) \int e^{-\frac {1}{4} (-1-2 x)^2} \, dx}{2 e^{23/4}}\\ &=x^2-3 e^{-6-x-x^2} \log (\log (5))-e^{-6-x-x^2} x \log (\log (5))+\frac {\sqrt {\pi } \text {erf}\left (\frac {1}{2} (-1-2 x)\right ) \log (\log (5))}{4 e^{23/4}}+\frac {\log (\log (5)) \int e^{-\frac {1}{4} (-1-2 x)^2} \, dx}{2 e^{23/4}}\\ &=x^2-3 e^{-6-x-x^2} \log (\log (5))-e^{-6-x-x^2} x \log (\log (5))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 31, normalized size = 1.29 \begin {gather*} x^2+e^{-x-x^2} \left (-\frac {3}{e^6}-\frac {x}{e^6}\right ) \log (\log (5)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 32, normalized size = 1.33 \begin {gather*} {\left (x^{2} e^{\left (x^{2} + x + 6\right )} - {\left (x + 3\right )} \log \left (\log \relax (5)\right )\right )} e^{\left (-x^{2} - x - 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 32, normalized size = 1.33 \begin {gather*} x^{2} - \frac {1}{2} \, {\left ({\left (2 \, x + 1\right )} \log \left (\log \relax (5)\right ) + 5 \, \log \left (\log \relax (5)\right )\right )} e^{\left (-x^{2} - x - 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 24, normalized size = 1.00
method | result | size |
risch | \(x^{2}-\ln \left (\ln \relax (5)\right ) \left (3+x \right ) {\mathrm e}^{-x^{2}-x -6}\) | \(24\) |
default | \(x^{2}-3 \ln \left (\ln \relax (5)\right ) {\mathrm e}^{-x^{2}-x -6}-x \ln \left (\ln \relax (5)\right ) {\mathrm e}^{-x^{2}-x -6}\) | \(38\) |
norman | \(\left (x^{2} {\mathrm e}^{x} {\mathrm e}^{x^{2}+6}-x \ln \left (\ln \relax (5)\right )-3 \ln \left (\ln \relax (5)\right )\right ) {\mathrm e}^{-x} {\mathrm e}^{-x^{2}-6}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 152, normalized size = 6.33 \begin {gather*} \sqrt {\pi } \operatorname {erf}\left (x + \frac {1}{2}\right ) e^{\left (-\frac {23}{4}\right )} \log \left (\log \relax (5)\right ) - \frac {1}{4} i \, {\left (-\frac {4 i \, {\left (2 \, x + 1\right )}^{3} \Gamma \left (\frac {3}{2}, \frac {1}{4} \, {\left (2 \, x + 1\right )}^{2}\right )}{{\left ({\left (2 \, x + 1\right )}^{2}\right )}^{\frac {3}{2}}} + \frac {i \, \sqrt {\pi } {\left (2 \, x + 1\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {{\left (2 \, x + 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (2 \, x + 1\right )}^{2}}} + 4 i \, e^{\left (-\frac {1}{4} \, {\left (2 \, x + 1\right )}^{2}\right )}\right )} e^{\left (-\frac {23}{4}\right )} \log \left (\log \relax (5)\right ) - \frac {7}{4} i \, {\left (-\frac {i \, \sqrt {\pi } {\left (2 \, x + 1\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {{\left (2 \, x + 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {{\left (2 \, x + 1\right )}^{2}}} - 2 i \, e^{\left (-\frac {1}{4} \, {\left (2 \, x + 1\right )}^{2}\right )}\right )} e^{\left (-\frac {23}{4}\right )} \log \left (\log \relax (5)\right ) + x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 39, normalized size = 1.62 \begin {gather*} x^2-3\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-6}\,{\mathrm {e}}^{-x^2}\,\ln \left (\ln \relax (5)\right )-x\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-6}\,{\mathrm {e}}^{-x^2}\,\ln \left (\ln \relax (5)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 32, normalized size = 1.33 \begin {gather*} x^{2} + \left (- x e^{- x} \log {\left (\log {\relax (5 )} \right )} - 3 e^{- x} \log {\left (\log {\relax (5 )} \right )}\right ) e^{- x^{2} - 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________