Optimal. Leaf size=31 \[ x \left (x+\log \left (2-\log \left (-e^{\left (-\frac {e^{x/4}}{3}+x\right )^2}+x\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 30.11, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-18 x+72 x^2+e^{\frac {1}{9} \left (e^{x/2}-6 e^{x/4} x+9 x^2\right )} \left (-72 x+e^{x/2} x+36 x^2+e^{x/4} \left (-12 x-3 x^2\right )\right )+\left (36 e^{\frac {1}{9} \left (e^{x/2}-6 e^{x/4} x+9 x^2\right )} x-36 x^2\right ) \log \left (-e^{\frac {1}{9} \left (e^{x/2}-6 e^{x/4} x+9 x^2\right )}+x\right )+\left (-36 e^{\frac {1}{9} \left (e^{x/2}-6 e^{x/4} x+9 x^2\right )}+36 x+\left (18 e^{\frac {1}{9} \left (e^{x/2}-6 e^{x/4} x+9 x^2\right )}-18 x\right ) \log \left (-e^{\frac {1}{9} \left (e^{x/2}-6 e^{x/4} x+9 x^2\right )}+x\right )\right ) \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/2}-6 e^{x/4} x+9 x^2\right )}+x\right )\right )}{-36 e^{\frac {1}{9} \left (e^{x/2}-6 e^{x/4} x+9 x^2\right )}+36 x+\left (18 e^{\frac {1}{9} \left (e^{x/2}-6 e^{x/4} x+9 x^2\right )}-18 x\right ) \log \left (-e^{\frac {1}{9} \left (e^{x/2}-6 e^{x/4} x+9 x^2\right )}+x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\frac {x \left (e^{\frac {e^{x/2}}{9}+\frac {x}{2}+x^2}+36 e^{\frac {e^{x/2}}{9}+x^2} (-2+x)-3 e^{\frac {e^{x/2}}{9}+\frac {x}{4}+x^2} (4+x)+18 e^{\frac {2}{3} e^{x/4} x} (-1+4 x)\right )}{e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x}+36 \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )-18 \log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right ) \left (2 x+\log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )\right )}{18 \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx\\ &=\frac {1}{18} \int \frac {-\frac {x \left (e^{\frac {e^{x/2}}{9}+\frac {x}{2}+x^2}+36 e^{\frac {e^{x/2}}{9}+x^2} (-2+x)-3 e^{\frac {e^{x/2}}{9}+\frac {x}{4}+x^2} (4+x)+18 e^{\frac {2}{3} e^{x/4} x} (-1+4 x)\right )}{e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x}+36 \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )-18 \log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right ) \left (2 x+\log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )\right )}{2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx\\ &=\frac {1}{18} \int \left (\frac {e^{\frac {2}{3} e^{x/4} x} x \left (18+12 e^{x/4} x-e^{x/2} x-36 x^2+3 e^{x/4} x^2\right )}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )}+\frac {-72 x-12 e^{x/4} x+e^{x/2} x+36 x^2-3 e^{x/4} x^2+36 x \log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )-36 \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )+18 \log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right ) \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )}\right ) \, dx\\ &=\frac {1}{18} \int \frac {e^{\frac {2}{3} e^{x/4} x} x \left (18+12 e^{x/4} x-e^{x/2} x-36 x^2+3 e^{x/4} x^2\right )}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx+\frac {1}{18} \int \frac {-72 x-12 e^{x/4} x+e^{x/2} x+36 x^2-3 e^{x/4} x^2+36 x \log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )-36 \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )+18 \log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right ) \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx\\ &=\frac {1}{18} \int \left (\frac {18 e^{\frac {2}{3} e^{x/4} x} x}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )}+\frac {12 e^{\frac {x}{4}+\frac {2}{3} e^{x/4} x} x^2}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )}-\frac {e^{\frac {x}{2}+\frac {2}{3} e^{x/4} x} x^2}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )}-\frac {36 e^{\frac {2}{3} e^{x/4} x} x^3}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )}+\frac {3 e^{\frac {x}{4}+\frac {2}{3} e^{x/4} x} x^3}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )}\right ) \, dx+\frac {1}{18} \int \left (\frac {e^{x/2} x}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )}-\frac {3 e^{x/4} x (4+x)}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )}+\frac {18 \left (-4 x+2 x^2+2 x \log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )-2 \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right ) \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )\right )}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )}\right ) \, dx\\ &=\frac {1}{18} \int \frac {e^{x/2} x}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx-\frac {1}{18} \int \frac {e^{\frac {x}{2}+\frac {2}{3} e^{x/4} x} x^2}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx-\frac {1}{6} \int \frac {e^{x/4} x (4+x)}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx+\frac {1}{6} \int \frac {e^{\frac {x}{4}+\frac {2}{3} e^{x/4} x} x^3}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx+\frac {2}{3} \int \frac {e^{\frac {x}{4}+\frac {2}{3} e^{x/4} x} x^2}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx-2 \int \frac {e^{\frac {2}{3} e^{x/4} x} x^3}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx+\int \frac {e^{\frac {2}{3} e^{x/4} x} x}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx+\int \frac {-4 x+2 x^2+2 x \log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )-2 \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right ) \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx\\ &=-\left (\frac {1}{18} \int \frac {e^{\frac {1}{6} \left (3+4 e^{x/4}\right ) x} x^2}{\left (e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x\right ) \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx\right )+\frac {1}{18} \int \frac {e^{x/2} x}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx-\frac {1}{6} \int \left (\frac {4 e^{x/4} x}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )}+\frac {e^{x/4} x^2}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )}\right ) \, dx+\frac {1}{6} \int \frac {e^{\frac {1}{12} \left (3+8 e^{x/4}\right ) x} x^3}{\left (e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x\right ) \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx+\frac {2}{3} \int \frac {e^{\frac {1}{12} \left (3+8 e^{x/4}\right ) x} x^2}{\left (e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x\right ) \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx-2 \int \frac {e^{\frac {2}{3} e^{x/4} x} x^3}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx+\int \frac {e^{\frac {2}{3} e^{x/4} x} x}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx+\int \left (\frac {2 x \left (-2+x+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )}+\log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )\right ) \, dx\\ &=-\left (\frac {1}{18} \int \frac {e^{\frac {1}{6} \left (3+4 e^{x/4}\right ) x} x^2}{\left (e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x\right ) \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx\right )+\frac {1}{18} \int \frac {e^{x/2} x}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx+\frac {1}{6} \int \frac {e^{\frac {1}{12} \left (3+8 e^{x/4}\right ) x} x^3}{\left (e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x\right ) \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx-\frac {1}{6} \int \frac {e^{x/4} x^2}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx+\frac {2}{3} \int \frac {e^{\frac {1}{12} \left (3+8 e^{x/4}\right ) x} x^2}{\left (e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x\right ) \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx-\frac {2}{3} \int \frac {e^{x/4} x}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx-2 \int \frac {e^{\frac {2}{3} e^{x/4} x} x^3}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx+2 \int \frac {x \left (-2+x+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx+\int \frac {e^{\frac {2}{3} e^{x/4} x} x}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx+\int \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right ) \, dx\\ &=-\left (\frac {1}{18} \int \frac {e^{\frac {1}{6} \left (3+4 e^{x/4}\right ) x} x^2}{\left (e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x\right ) \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx\right )+\frac {1}{18} \int \frac {e^{x/2} x}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx+\frac {1}{6} \int \frac {e^{\frac {1}{12} \left (3+8 e^{x/4}\right ) x} x^3}{\left (e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x\right ) \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx-\frac {1}{6} \int \frac {e^{x/4} x^2}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx+\frac {2}{3} \int \frac {e^{\frac {1}{12} \left (3+8 e^{x/4}\right ) x} x^2}{\left (e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x\right ) \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx-\frac {2}{3} \int \frac {e^{x/4} x}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx+2 \int \left (x+\frac {x^2}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )}\right ) \, dx-2 \int \frac {e^{\frac {2}{3} e^{x/4} x} x^3}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx+4 \operatorname {Subst}\left (\int \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^x-12 x\right )^2}+4 x\right )\right ) \, dx,x,\frac {x}{4}\right )+\int \frac {e^{\frac {2}{3} e^{x/4} x} x}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx\\ &=x^2-\frac {1}{18} \int \frac {e^{\frac {1}{6} \left (3+4 e^{x/4}\right ) x} x^2}{\left (e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x\right ) \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx+\frac {1}{18} \int \frac {e^{x/2} x}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx+\frac {1}{6} \int \frac {e^{\frac {1}{12} \left (3+8 e^{x/4}\right ) x} x^3}{\left (e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x\right ) \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx-\frac {1}{6} \int \frac {e^{x/4} x^2}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx+\frac {2}{3} \int \frac {e^{\frac {1}{12} \left (3+8 e^{x/4}\right ) x} x^2}{\left (e^{\frac {e^{x/2}}{9}+x^2}-e^{\frac {2}{3} e^{x/4} x} x\right ) \left (2-\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx-\frac {2}{3} \int \frac {e^{x/4} x}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx+2 \int \frac {x^2}{-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )} \, dx-2 \int \frac {e^{\frac {2}{3} e^{x/4} x} x^3}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx+4 \operatorname {Subst}\left (\int \log \left (2-\log \left (-e^{\frac {1}{9} \left (e^x-12 x\right )^2}+4 x\right )\right ) \, dx,x,\frac {x}{4}\right )+\int \frac {e^{\frac {2}{3} e^{x/4} x} x}{\left (-e^{\frac {e^{x/2}}{9}+x^2}+e^{\frac {2}{3} e^{x/4} x} x\right ) \left (-2+\log \left (-e^{\frac {1}{9} \left (e^{x/4}-3 x\right )^2}+x\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.97, size = 52, normalized size = 1.68 \begin {gather*} \frac {1}{18} \left (18 x^2+18 x \log \left (2-\log \left (-e^{\frac {e^{x/2}}{9}-\frac {2}{3} e^{x/4} x+x^2}+x\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.08, size = 34, normalized size = 1.10 \begin {gather*} x^{2} + x \log \left (-\log \left (x - e^{\left (x^{2} - \frac {2}{3} \, x e^{\left (\frac {1}{4} \, x\right )} + \frac {1}{9} \, e^{\left (\frac {1}{2} \, x\right )}\right )}\right ) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {72 \, x^{2} + {\left (36 \, x^{2} + x e^{\left (\frac {1}{2} \, x\right )} - 3 \, {\left (x^{2} + 4 \, x\right )} e^{\left (\frac {1}{4} \, x\right )} - 72 \, x\right )} e^{\left (x^{2} - \frac {2}{3} \, x e^{\left (\frac {1}{4} \, x\right )} + \frac {1}{9} \, e^{\left (\frac {1}{2} \, x\right )}\right )} - 36 \, {\left (x^{2} - x e^{\left (x^{2} - \frac {2}{3} \, x e^{\left (\frac {1}{4} \, x\right )} + \frac {1}{9} \, e^{\left (\frac {1}{2} \, x\right )}\right )}\right )} \log \left (x - e^{\left (x^{2} - \frac {2}{3} \, x e^{\left (\frac {1}{4} \, x\right )} + \frac {1}{9} \, e^{\left (\frac {1}{2} \, x\right )}\right )}\right ) - 18 \, {\left ({\left (x - e^{\left (x^{2} - \frac {2}{3} \, x e^{\left (\frac {1}{4} \, x\right )} + \frac {1}{9} \, e^{\left (\frac {1}{2} \, x\right )}\right )}\right )} \log \left (x - e^{\left (x^{2} - \frac {2}{3} \, x e^{\left (\frac {1}{4} \, x\right )} + \frac {1}{9} \, e^{\left (\frac {1}{2} \, x\right )}\right )}\right ) - 2 \, x + 2 \, e^{\left (x^{2} - \frac {2}{3} \, x e^{\left (\frac {1}{4} \, x\right )} + \frac {1}{9} \, e^{\left (\frac {1}{2} \, x\right )}\right )}\right )} \log \left (-\log \left (x - e^{\left (x^{2} - \frac {2}{3} \, x e^{\left (\frac {1}{4} \, x\right )} + \frac {1}{9} \, e^{\left (\frac {1}{2} \, x\right )}\right )}\right ) + 2\right ) - 18 \, x}{18 \, {\left ({\left (x - e^{\left (x^{2} - \frac {2}{3} \, x e^{\left (\frac {1}{4} \, x\right )} + \frac {1}{9} \, e^{\left (\frac {1}{2} \, x\right )}\right )}\right )} \log \left (x - e^{\left (x^{2} - \frac {2}{3} \, x e^{\left (\frac {1}{4} \, x\right )} + \frac {1}{9} \, e^{\left (\frac {1}{2} \, x\right )}\right )}\right ) - 2 \, x + 2 \, e^{\left (x^{2} - \frac {2}{3} \, x e^{\left (\frac {1}{4} \, x\right )} + \frac {1}{9} \, e^{\left (\frac {1}{2} \, x\right )}\right )}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.27, size = 35, normalized size = 1.13
method | result | size |
risch | \(x^{2}+\ln \left (-\ln \left (-{\mathrm e}^{\frac {{\mathrm e}^{\frac {x}{2}}}{9}-\frac {2 x \,{\mathrm e}^{\frac {x}{4}}}{3}+x^{2}}+x \right )+2\right ) x\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 48, normalized size = 1.55 \begin {gather*} x^{2} - x \log \relax (3) + x \log \left (2 \, x e^{\left (\frac {1}{4} \, x\right )} - 3 \, \log \left (x e^{\left (\frac {2}{3} \, x e^{\left (\frac {1}{4} \, x\right )}\right )} - e^{\left (x^{2} + \frac {1}{9} \, e^{\left (\frac {1}{2} \, x\right )}\right )}\right ) + 6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.22, size = 33, normalized size = 1.06 \begin {gather*} x\,\left (x+\ln \left (2-\ln \left (x-{\mathrm {e}}^{\frac {{\mathrm {e}}^{x/2}}{9}}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-\frac {2\,x\,{\mathrm {e}}^{x/4}}{3}}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________