Optimal. Leaf size=28 \[ \frac {-2+x}{16-x+\frac {1}{4} e^{-5-x} (5-x) x} \]
________________________________________________________________________________________
Rubi [F] time = 3.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {224 e^{10+2 x}+e^{5+x} \left (40-56 x+32 x^2-4 x^3\right )}{25 x^2-10 x^3+x^4+e^{10+2 x} \left (4096-512 x+16 x^2\right )+e^{5+x} \left (640 x-168 x^2+8 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^{5+x} \left (10+56 e^{5+x}-14 x+8 x^2-x^3\right )}{\left (4 e^{5+x} (-16+x)+(-5+x) x\right )^2} \, dx\\ &=4 \int \frac {e^{5+x} \left (10+56 e^{5+x}-14 x+8 x^2-x^3\right )}{\left (4 e^{5+x} (-16+x)+(-5+x) x\right )^2} \, dx\\ &=4 \int \left (\frac {14 e^{5+x}}{(-16+x) \left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )}-\frac {e^{5+x} \left (160-304 x+156 x^2-24 x^3+x^4\right )}{(-16+x) \left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {e^{5+x} \left (160-304 x+156 x^2-24 x^3+x^4\right )}{(-16+x) \left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )^2} \, dx\right )+56 \int \frac {e^{5+x}}{(-16+x) \left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )} \, dx\\ &=-\left (4 \int \left (\frac {144 e^{5+x}}{\left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )^2}+\frac {2464 e^{5+x}}{(-16+x) \left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )^2}+\frac {28 e^{5+x} x}{\left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )^2}-\frac {8 e^{5+x} x^2}{\left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )^2}+\frac {e^{5+x} x^3}{\left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )^2}\right ) \, dx\right )+56 \int \frac {e^{5+x}}{(-16+x) \left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )} \, dx\\ &=-\left (4 \int \frac {e^{5+x} x^3}{\left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )^2} \, dx\right )+32 \int \frac {e^{5+x} x^2}{\left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )^2} \, dx+56 \int \frac {e^{5+x}}{(-16+x) \left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )} \, dx-112 \int \frac {e^{5+x} x}{\left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )^2} \, dx-576 \int \frac {e^{5+x}}{\left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )^2} \, dx-9856 \int \frac {e^{5+x}}{(-16+x) \left (-64 e^{5+x}-5 x+4 e^{5+x} x+x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.31, size = 32, normalized size = 1.14 \begin {gather*} \frac {-56 e^{5+x}+(-5+x) x}{4 e^{5+x} (-16+x)+(-5+x) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.00, size = 32, normalized size = 1.14 \begin {gather*} \frac {x^{2} - 5 \, x - 56 \, e^{\left (x + 5\right )}}{x^{2} + 4 \, {\left (x - 16\right )} e^{\left (x + 5\right )} - 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 36, normalized size = 1.29 \begin {gather*} \frac {x^{2} - 5 \, x - 56 \, e^{\left (x + 5\right )}}{x^{2} + 4 \, x e^{\left (x + 5\right )} - 5 \, x - 64 \, e^{\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 38, normalized size = 1.36
method | result | size |
norman | \(\frac {8 \,{\mathrm e}^{5} {\mathrm e}^{x}-4 x \,{\mathrm e}^{5} {\mathrm e}^{x}}{4 x \,{\mathrm e}^{5} {\mathrm e}^{x}-64 \,{\mathrm e}^{5} {\mathrm e}^{x}+x^{2}-5 x}\) | \(38\) |
risch | \(-\frac {14}{x -16}+\frac {\left (x^{2}-7 x +10\right ) x}{\left (x -16\right ) \left (4 x \,{\mathrm e}^{5+x}-64 \,{\mathrm e}^{5+x}+x^{2}-5 x \right )}\) | \(46\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 36, normalized size = 1.29 \begin {gather*} \frac {x^{2} - 5 \, x - 56 \, e^{\left (x + 5\right )}}{x^{2} + 4 \, {\left (x e^{5} - 16 \, e^{5}\right )} e^{x} - 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {224\,{\mathrm {e}}^{2\,x+10}-{\mathrm {e}}^{x+5}\,\left (4\,x^3-32\,x^2+56\,x-40\right )}{{\mathrm {e}}^{x+5}\,\left (8\,x^3-168\,x^2+640\,x\right )+{\mathrm {e}}^{2\,x+10}\,\left (16\,x^2-512\,x+4096\right )+25\,x^2-10\,x^3+x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.33, size = 51, normalized size = 1.82 \begin {gather*} \frac {x^{3} - 7 x^{2} + 10 x}{x^{3} - 21 x^{2} + 80 x + \left (4 x^{2} e^{5} - 128 x e^{5} + 1024 e^{5}\right ) e^{x}} - \frac {14}{x - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________