Optimal. Leaf size=28 \[ x+(2+3 x)^2+\frac {2 x}{\log \left (-9+\frac {x}{(-5+x) \log (x)}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 6.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 x-2 x^2-10 x \log (x)+\left (\left (10 x-2 x^2\right ) \log (x)+\left (450-180 x+18 x^2\right ) \log ^2(x)\right ) \log \left (\frac {x+(45-9 x) \log (x)}{(-5+x) \log (x)}\right )+\left (\left (65 x+77 x^2-18 x^3\right ) \log (x)+\left (2925+2880 x-1503 x^2+162 x^3\right ) \log ^2(x)\right ) \log ^2\left (\frac {x+(45-9 x) \log (x)}{(-5+x) \log (x)}\right )}{\left (\left (5 x-x^2\right ) \log (x)+\left (225-90 x+9 x^2\right ) \log ^2(x)\right ) \log ^2\left (\frac {x+(45-9 x) \log (x)}{(-5+x) \log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 x-2 x^2-10 x \log (x)+2 (-5+x) \log (x) (-x+9 (-5+x) \log (x)) \log \left (-9+\frac {x}{(-5+x) \log (x)}\right )+\left (-65-77 x+18 x^2\right ) \log (x) (-x+9 (-5+x) \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )}{(5-x) \log (x) (x-9 (-5+x) \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx\\ &=\int \left (13+18 x-\frac {2 x (-5+x+5 \log (x))}{(-5+x) \log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )}+\frac {2}{\log \left (-9+\frac {x}{(-5+x) \log (x)}\right )}\right ) \, dx\\ &=13 x+9 x^2-2 \int \frac {x (-5+x+5 \log (x))}{(-5+x) \log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx+2 \int \frac {1}{\log \left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx\\ &=13 x+9 x^2-2 \int \left (\frac {-5+x+5 \log (x)}{\log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )}+\frac {5 (-5+x+5 \log (x))}{(-5+x) \log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )}\right ) \, dx+2 \int \frac {1}{\log \left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx\\ &=13 x+9 x^2-2 \int \frac {-5+x+5 \log (x)}{\log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx+2 \int \frac {1}{\log \left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx-10 \int \frac {-5+x+5 \log (x)}{(-5+x) \log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx\\ &=13 x+9 x^2-2 \int \left (\frac {5}{(-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )}-\frac {5}{\log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )}+\frac {x}{\log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )}\right ) \, dx+2 \int \frac {1}{\log \left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx-10 \int \left (\frac {5}{(-5+x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )}-\frac {5}{(-5+x) \log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )}+\frac {x}{(-5+x) \log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )}\right ) \, dx\\ &=13 x+9 x^2-2 \int \frac {x}{\log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx+2 \int \frac {1}{\log \left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx-10 \int \frac {1}{(-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx+10 \int \frac {1}{\log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx-10 \int \frac {x}{(-5+x) \log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx-50 \int \frac {1}{(-5+x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx+50 \int \frac {1}{(-5+x) \log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx\\ &=13 x+9 x^2-2 \int \frac {x}{\log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx+2 \int \frac {1}{\log \left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx-10 \int \left (\frac {1}{\log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )}+\frac {5}{(-5+x) \log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )}\right ) \, dx-10 \int \frac {1}{(-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx+10 \int \frac {1}{\log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx-50 \int \frac {1}{(-5+x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx+50 \int \frac {1}{(-5+x) \log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx\\ &=13 x+9 x^2-2 \int \frac {x}{\log (x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx+2 \int \frac {1}{\log \left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx-10 \int \frac {1}{(-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx-50 \int \frac {1}{(-5+x) (-x-45 \log (x)+9 x \log (x)) \log ^2\left (-9+\frac {x}{(-5+x) \log (x)}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 28, normalized size = 1.00 \begin {gather*} 13 x+9 x^2+\frac {2 x}{\log \left (-9+\frac {x}{(-5+x) \log (x)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 63, normalized size = 2.25 \begin {gather*} \frac {{\left (9 \, x^{2} + 13 \, x\right )} \log \left (-\frac {9 \, {\left (x - 5\right )} \log \relax (x) - x}{{\left (x - 5\right )} \log \relax (x)}\right ) + 2 \, x}{\log \left (-\frac {9 \, {\left (x - 5\right )} \log \relax (x) - x}{{\left (x - 5\right )} \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.63, size = 39, normalized size = 1.39 \begin {gather*} 9 \, x^{2} + 13 \, x - \frac {2 \, x}{\log \left (x \log \relax (x) - 5 \, \log \relax (x)\right ) - \log \left (-9 \, x \log \relax (x) + x + 45 \, \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.40, size = 395, normalized size = 14.11
method | result | size |
risch | \(9 x^{2}+13 x +\frac {4 i x}{\pi \,\mathrm {csgn}\left (\frac {i}{x -5}\right ) \mathrm {csgn}\left (i \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )}{x -5}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x -5}\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )}{x -5}\right )^{2}+2 \pi \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )}{\ln \relax (x ) \left (x -5\right )}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )}{x -5}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )}{x -5}\right )^{3}-\pi \,\mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )}{x -5}\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )}{\ln \relax (x ) \left (x -5\right )}\right )^{2}+\pi \,\mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )}{x -5}\right ) \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )}{\ln \relax (x ) \left (x -5\right )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-\pi \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )}{\ln \relax (x ) \left (x -5\right )}\right )^{3}-\pi \mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )}{\ln \relax (x ) \left (x -5\right )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-2 \pi +4 i \ln \relax (3)-2 i \ln \left (x -5\right )-2 i \ln \left (\ln \relax (x )\right )+2 i \ln \left (\left (\ln \relax (x )-\frac {1}{9}\right ) x -5 \ln \relax (x )\right )}\) | \(395\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 78, normalized size = 2.79 \begin {gather*} \frac {{\left (9 \, x^{2} + 13 \, x\right )} \log \left (-9 \, {\left (x - 5\right )} \log \relax (x) + x\right ) - {\left (9 \, x^{2} + 13 \, x\right )} \log \left (x - 5\right ) - {\left (9 \, x^{2} + 13 \, x\right )} \log \left (\log \relax (x)\right ) + 2 \, x}{\log \left (-9 \, {\left (x - 5\right )} \log \relax (x) + x\right ) - \log \left (x - 5\right ) - \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.38, size = 184, normalized size = 6.57 \begin {gather*} 451\,x+90\,\ln \relax (x)+\frac {14000}{x+5}-\frac {\frac {2\,{\left (x-5\right )}^2\,\left (27\,x^3-305\,x^2+1075\,x-1125\right )}{25\,\left (x+5\right )}+\frac {2\,x\,\ln \relax (x)\,\left (36\,x^3-525\,x^2+2600\,x-4375\right )}{5\,\left (x+5\right )}}{x+5\,\ln \relax (x)-5}+\frac {2\,x+\frac {2\,\ln \left (\frac {x-\ln \relax (x)\,\left (9\,x-45\right )}{\ln \relax (x)\,\left (x-5\right )}\right )\,\ln \relax (x)\,\left (x-5\right )\,\left (x+45\,\ln \relax (x)-9\,x\,\ln \relax (x)\right )}{x+5\,\ln \relax (x)-5}}{\ln \left (\frac {x-\ln \relax (x)\,\left (9\,x-45\right )}{\ln \relax (x)\,\left (x-5\right )}\right )}-\ln \relax (x)\,\left (36\,x-\frac {18\,x^2}{5}\right )-37\,x^2+\frac {54\,x^3}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 29, normalized size = 1.04 \begin {gather*} 9 x^{2} + 13 x + \frac {2 x}{\log {\left (\frac {x + \left (45 - 9 x\right ) \log {\relax (x )}}{\left (x - 5\right ) \log {\relax (x )}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________