Optimal. Leaf size=24 \[ e^{1+x} \log \left (x^2+e^{4+x} \left (x-x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 e^{1+x} x+e^{5+2 x} \left (-1+x+x^2\right )+\left (-e^{1+x} x^2+e^{5+2 x} \left (-x+x^2\right )\right ) \log \left (x^2+e^{4+x} \left (x-x^2\right )\right )}{-x^2+e^{4+x} \left (-x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1-x+x^2}{e^3 (-1+x)^2}+\frac {x \left (1-x+x^2\right )}{e^3 (-1+x)^2 \left (-e^{4+x}-x+e^{4+x} x\right )}+\frac {e^{1+x} \left (-1+x+x^2-x \log \left (x \left (-e^{4+x} (-1+x)+x\right )\right )+x^2 \log \left (x \left (-e^{4+x} (-1+x)+x\right )\right )\right )}{(-1+x) x}\right ) \, dx\\ &=\frac {\int \frac {1-x+x^2}{(-1+x)^2} \, dx}{e^3}+\frac {\int \frac {x \left (1-x+x^2\right )}{(-1+x)^2 \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}+\int \frac {e^{1+x} \left (-1+x+x^2-x \log \left (x \left (-e^{4+x} (-1+x)+x\right )\right )+x^2 \log \left (x \left (-e^{4+x} (-1+x)+x\right )\right )\right )}{(-1+x) x} \, dx\\ &=\frac {\int \left (1+\frac {1}{(-1+x)^2}+\frac {1}{-1+x}\right ) \, dx}{e^3}+\frac {\int \left (\frac {1}{-e^{4+x}-x+e^{4+x} x}+\frac {1}{(-1+x)^2 \left (-e^{4+x}-x+e^{4+x} x\right )}+\frac {2}{(-1+x) \left (-e^{4+x}-x+e^{4+x} x\right )}+\frac {x}{-e^{4+x}-x+e^{4+x} x}\right ) \, dx}{e^3}+\int \left (\frac {e^{1+x} \left (-1+x+x^2\right )}{(-1+x) x}+e^{1+x} \log \left (-e^{4+x} (-1+x) x+x^2\right )\right ) \, dx\\ &=\frac {1}{e^3 (1-x)}+\frac {x}{e^3}+\frac {\log (1-x)}{e^3}+\frac {\int \frac {1}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {\int \frac {1}{(-1+x)^2 \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}+\frac {\int \frac {x}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {2 \int \frac {1}{(-1+x) \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}+\int \frac {e^{1+x} \left (-1+x+x^2\right )}{(-1+x) x} \, dx+\int e^{1+x} \log \left (-e^{4+x} (-1+x) x+x^2\right ) \, dx\\ &=\frac {1}{e^3 (1-x)}+\frac {x}{e^3}+\frac {\log (1-x)}{e^3}+e^{1+x} \log \left (e^{4+x} (1-x) x+x^2\right )+\frac {\int \frac {1}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {\int \frac {1}{(-1+x)^2 \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}+\frac {\int \frac {x}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {2 \int \frac {1}{(-1+x) \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}+\int \left (e^{1+x}+\frac {e^{1+x}}{-1+x}+\frac {e^{1+x}}{x}\right ) \, dx-\int \frac {e^{1+x} \left (-2 x+e^{4+x} \left (-1+x+x^2\right )\right )}{\left (e^{4+x} (-1+x)-x\right ) x} \, dx\\ &=\frac {1}{e^3 (1-x)}+\frac {x}{e^3}+\frac {\log (1-x)}{e^3}+e^{1+x} \log \left (e^{4+x} (1-x) x+x^2\right )+\frac {\int \frac {1}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {\int \frac {1}{(-1+x)^2 \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}+\frac {\int \frac {x}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {2 \int \frac {1}{(-1+x) \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}+\int e^{1+x} \, dx+\int \frac {e^{1+x}}{-1+x} \, dx+\int \frac {e^{1+x}}{x} \, dx-\int \left (\frac {e^{1+x} \left (1-x+x^2\right )}{(-1+x) \left (-e^{4+x}-x+e^{4+x} x\right )}+\frac {e^{1+x} \left (-1+x+x^2\right )}{(-1+x) x}\right ) \, dx\\ &=e^{1+x}+\frac {1}{e^3 (1-x)}+\frac {x}{e^3}+e^2 \text {Ei}(-1+x)+e \text {Ei}(x)+\frac {\log (1-x)}{e^3}+e^{1+x} \log \left (e^{4+x} (1-x) x+x^2\right )+\frac {\int \frac {1}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {\int \frac {1}{(-1+x)^2 \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}+\frac {\int \frac {x}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {2 \int \frac {1}{(-1+x) \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}-\int \frac {e^{1+x} \left (1-x+x^2\right )}{(-1+x) \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx-\int \frac {e^{1+x} \left (-1+x+x^2\right )}{(-1+x) x} \, dx\\ &=e^{1+x}+\frac {1}{e^3 (1-x)}+\frac {x}{e^3}+e^2 \text {Ei}(-1+x)+e \text {Ei}(x)+\frac {\log (1-x)}{e^3}+e^{1+x} \log \left (e^{4+x} (1-x) x+x^2\right )+\frac {\int \frac {1}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {\int \frac {1}{(-1+x)^2 \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}+\frac {\int \frac {x}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {2 \int \frac {1}{(-1+x) \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}-\int \left (e^{1+x}+\frac {e^{1+x}}{-1+x}+\frac {e^{1+x}}{x}\right ) \, dx-\int \left (\frac {e^{1+x}}{(-1+x) \left (-e^{4+x}-x+e^{4+x} x\right )}+\frac {e^{1+x} x}{-e^{4+x}-x+e^{4+x} x}\right ) \, dx\\ &=e^{1+x}+\frac {1}{e^3 (1-x)}+\frac {x}{e^3}+e^2 \text {Ei}(-1+x)+e \text {Ei}(x)+\frac {\log (1-x)}{e^3}+e^{1+x} \log \left (e^{4+x} (1-x) x+x^2\right )+\frac {\int \frac {1}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {\int \frac {1}{(-1+x)^2 \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}+\frac {\int \frac {x}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {2 \int \frac {1}{(-1+x) \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}-\int e^{1+x} \, dx-\int \frac {e^{1+x}}{-1+x} \, dx-\int \frac {e^{1+x}}{x} \, dx-\int \frac {e^{1+x}}{(-1+x) \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx-\int \frac {e^{1+x} x}{-e^{4+x}-x+e^{4+x} x} \, dx\\ &=\frac {1}{e^3 (1-x)}+\frac {x}{e^3}+\frac {\log (1-x)}{e^3}+e^{1+x} \log \left (e^{4+x} (1-x) x+x^2\right )+\frac {\int \frac {1}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {\int \frac {1}{(-1+x)^2 \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}+\frac {\int \frac {x}{-e^{4+x}-x+e^{4+x} x} \, dx}{e^3}+\frac {2 \int \frac {1}{(-1+x) \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx}{e^3}-\int \frac {e^{1+x}}{(-1+x) \left (-e^{4+x}-x+e^{4+x} x\right )} \, dx-\int \frac {e^{1+x} x}{-e^{4+x}-x+e^{4+x} x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 21, normalized size = 0.88 \begin {gather*} e^{1+x} \log \left (x \left (-e^{4+x} (-1+x)+x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 23, normalized size = 0.96 \begin {gather*} e^{\left (x + 1\right )} \log \left (x^{2} - {\left (x^{2} - x\right )} e^{\left (x + 4\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 25, normalized size = 1.04 \begin {gather*} e^{\left (x + 1\right )} \log \left (-x^{2} e^{\left (x + 4\right )} + x^{2} + x e^{\left (x + 4\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 27, normalized size = 1.12
method | result | size |
norman | \({\mathrm e}^{-3} {\mathrm e}^{4+x} \ln \left (\left (-x^{2}+x \right ) {\mathrm e}^{4+x}+x^{2}\right )\) | \(27\) |
risch | \(\ln \left (\left ({\mathrm e}^{4+x}-1\right ) x -{\mathrm e}^{4+x}\right ) {\mathrm e}^{x +1}+\ln \relax (x ) {\mathrm e}^{x +1}-i \mathrm {csgn}\left (i x \left (\left ({\mathrm e}^{4+x}-1\right ) x -{\mathrm e}^{4+x}\right )\right )^{2} \pi \,{\mathrm e}^{x +1}-\frac {i \mathrm {csgn}\left (i x \left (\left ({\mathrm e}^{4+x}-1\right ) x -{\mathrm e}^{4+x}\right )\right ) \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{4+x}-1\right ) x -{\mathrm e}^{4+x}\right )\right ) \mathrm {csgn}\left (i x \right ) \pi \,{\mathrm e}^{x +1}}{2}+\frac {i \mathrm {csgn}\left (i x \left (\left ({\mathrm e}^{4+x}-1\right ) x -{\mathrm e}^{4+x}\right )\right )^{2} \mathrm {csgn}\left (i x \right ) \pi \,{\mathrm e}^{x +1}}{2}+\frac {i \mathrm {csgn}\left (i x \left (\left ({\mathrm e}^{4+x}-1\right ) x -{\mathrm e}^{4+x}\right )\right )^{2} \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{4+x}-1\right ) x -{\mathrm e}^{4+x}\right )\right ) \pi \,{\mathrm e}^{x +1}}{2}+\frac {i \mathrm {csgn}\left (i x \left (\left ({\mathrm e}^{4+x}-1\right ) x -{\mathrm e}^{4+x}\right )\right )^{3} \pi \,{\mathrm e}^{x +1}}{2}+i \pi \,{\mathrm e}^{x +1}\) | \(234\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 29, normalized size = 1.21 \begin {gather*} e^{\left (x + 1\right )} \log \left (-{\left (x e^{4} - e^{4}\right )} e^{x} + x\right ) + e^{\left (x + 1\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.02, size = 22, normalized size = 0.92 \begin {gather*} \ln \left (x^2+{\mathrm {e}}^4\,{\mathrm {e}}^x\,\left (x-x^2\right )\right )\,{\mathrm {e}}^{x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________