Optimal. Leaf size=26 \[ e^{-2+\frac {3}{x}} \left (e^{\frac {2}{-3+x+\log (4)}}-x\right ) x \]
________________________________________________________________________________________
Rubi [F] time = 7.56, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {3-2 x}{x}+\frac {2}{-3+x+\log (4)}} \left (-27+27 x-11 x^2+x^3+\left (18-12 x+2 x^2\right ) \log (4)+(-3+x) \log ^2(4)\right )+e^{\frac {3-2 x}{x}} \left (27 x-36 x^2+15 x^3-2 x^4+\left (-18 x+18 x^2-4 x^3\right ) \log (4)+\left (3 x-2 x^2\right ) \log ^2(4)\right )}{9 x-6 x^2+x^3+\left (-6 x+2 x^2\right ) \log (4)+x \log ^2(4)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {3-2 x}{x}+\frac {2}{-3+x+\log (4)}} \left (-27+27 x-11 x^2+x^3+\left (18-12 x+2 x^2\right ) \log (4)+(-3+x) \log ^2(4)\right )+e^{\frac {3-2 x}{x}} \left (27 x-36 x^2+15 x^3-2 x^4+\left (-18 x+18 x^2-4 x^3\right ) \log (4)+\left (3 x-2 x^2\right ) \log ^2(4)\right )}{-6 x^2+x^3+\left (-6 x+2 x^2\right ) \log (4)+x \left (9+\log ^2(4)\right )} \, dx\\ &=\int e^{-2+\frac {3}{x}} \left (3-2 x+\frac {e^{\frac {2}{-3+x+\log (4)}} \left (x^3-3 (-3+\log (4))^2+x \left (27-12 \log (4)+\log ^2(4)\right )+x^2 (-11+\log (16))\right )}{x (-3+x+\log (4))^2}\right ) \, dx\\ &=\int \left (3 e^{-2+\frac {3}{x}}-2 e^{-2+\frac {3}{x}} x+\frac {e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}} \left (x^3-3 (3-\log (4))^2+x (3-\log (4)) (9-\log (4))-x^2 (11-\log (16))\right )}{x (3-x-\log (4))^2}\right ) \, dx\\ &=-\left (2 \int e^{-2+\frac {3}{x}} x \, dx\right )+3 \int e^{-2+\frac {3}{x}} \, dx+\int \frac {e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}} \left (x^3-3 (3-\log (4))^2+x (3-\log (4)) (9-\log (4))-x^2 (11-\log (16))\right )}{x (3-x-\log (4))^2} \, dx\\ &=3 e^{-2+\frac {3}{x}} x-e^{-2+\frac {3}{x}} x^2-3 \int e^{-2+\frac {3}{x}} \, dx+9 \int \frac {e^{-2+\frac {3}{x}}}{x} \, dx+\int \left (e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}}-\frac {3 e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}}}{x}-\frac {2 e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}}}{-3+x+\log (4)}+\frac {e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}} (-6+\log (16))}{(-3+x+\log (4))^2}\right ) \, dx\\ &=-e^{-2+\frac {3}{x}} x^2-\frac {9 \text {Ei}\left (\frac {3}{x}\right )}{e^2}-2 \int \frac {e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}}}{-3+x+\log (4)} \, dx-3 \int \frac {e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}}}{x} \, dx-9 \int \frac {e^{-2+\frac {3}{x}}}{x} \, dx+(-6+\log (16)) \int \frac {e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}}}{(-3+x+\log (4))^2} \, dx+\int e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}} \, dx\\ &=-e^{-2+\frac {3}{x}} x^2-2 \int \frac {e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}}}{-3+x+\log (4)} \, dx-3 \int \frac {e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}}}{x} \, dx+(-6+\log (16)) \int \frac {e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}}}{(-3+x+\log (4))^2} \, dx+\int e^{-2+\frac {3}{x}+\frac {2}{-3+x+\log (4)}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.53, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {3-2 x}{x}+\frac {2}{-3+x+\log (4)}} \left (-27+27 x-11 x^2+x^3+\left (18-12 x+2 x^2\right ) \log (4)+(-3+x) \log ^2(4)\right )+e^{\frac {3-2 x}{x}} \left (27 x-36 x^2+15 x^3-2 x^4+\left (-18 x+18 x^2-4 x^3\right ) \log (4)+\left (3 x-2 x^2\right ) \log ^2(4)\right )}{9 x-6 x^2+x^3+\left (-6 x+2 x^2\right ) \log (4)+x \log ^2(4)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.56, size = 55, normalized size = 2.12 \begin {gather*} -x^{2} e^{\left (-\frac {2 \, x - 3}{x}\right )} + x e^{\left (-\frac {2 \, x^{2} + 2 \, {\left (2 \, x - 3\right )} \log \relax (2) - 11 \, x + 9}{x^{2} + 2 \, x \log \relax (2) - 3 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.63, size = 55, normalized size = 2.12 \begin {gather*} -x^{2} e^{\left (-\frac {2 \, x - 3}{x}\right )} + x e^{\left (-\frac {2 \, x^{2} + 4 \, x \log \relax (2) - 11 \, x - 6 \, \log \relax (2) + 9}{x^{2} + 2 \, x \log \relax (2) - 3 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.50, size = 54, normalized size = 2.08
method | result | size |
risch | \(-x^{2} {\mathrm e}^{-\frac {2 x -3}{x}}+x \,{\mathrm e}^{-\frac {4 x \ln \relax (2)+2 x^{2}-6 \ln \relax (2)-11 x +9}{x \left (2 \ln \relax (2)+x -3\right )}}\) | \(54\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {3-2 x}{x}} {\mathrm e}^{\frac {2}{2 \ln \relax (2)+x -3}}+\left (3-2 \ln \relax (2)\right ) x^{2} {\mathrm e}^{\frac {3-2 x}{x}}+\left (2 \ln \relax (2)-3\right ) x \,{\mathrm e}^{\frac {3-2 x}{x}} {\mathrm e}^{\frac {2}{2 \ln \relax (2)+x -3}}-x^{3} {\mathrm e}^{\frac {3-2 x}{x}}}{2 \ln \relax (2)+x -3}\) | \(103\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 36, normalized size = 1.38 \begin {gather*} -{\left (x^{2} e^{\frac {3}{x}} - x e^{\left (\frac {2}{x + 2 \, \log \relax (2) - 3} + \frac {3}{x}\right )}\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \text {Hanged} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.01, size = 32, normalized size = 1.23 \begin {gather*} - x^{2} e^{\frac {3 - 2 x}{x}} + x e^{\frac {3 - 2 x}{x}} e^{\frac {2}{x - 3 + 2 \log {\relax (2 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________