Optimal. Leaf size=27 \[ \frac {e^x}{-x+\frac {-\frac {21}{5}+x}{1-\frac {x}{\log (x)}}} \]
________________________________________________________________________________________
Rubi [F] time = 1.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (-105+25 x+25 x^2-25 x^3\right )+e^x \left (105+55 x+25 x^2\right ) \log (x)-105 e^x \log ^2(x)}{25 x^4-210 x^2 \log (x)+441 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^x \left (-21+5 x+5 x^2-5 x^3+21 \log (x)+11 x \log (x)+5 x^2 \log (x)-21 \log ^2(x)\right )}{\left (5 x^2-21 \log (x)\right )^2} \, dx\\ &=5 \int \frac {e^x \left (-21+5 x+5 x^2-5 x^3+21 \log (x)+11 x \log (x)+5 x^2 \log (x)-21 \log ^2(x)\right )}{\left (5 x^2-21 \log (x)\right )^2} \, dx\\ &=5 \int \left (-\frac {e^x}{21}+\frac {e^x \left (-441+105 x+210 x^2-50 x^3\right )}{21 \left (5 x^2-21 \log (x)\right )^2}+\frac {e^x \left (-21-11 x+5 x^2\right )}{21 \left (5 x^2-21 \log (x)\right )}\right ) \, dx\\ &=-\frac {5 \int e^x \, dx}{21}+\frac {5}{21} \int \frac {e^x \left (-441+105 x+210 x^2-50 x^3\right )}{\left (5 x^2-21 \log (x)\right )^2} \, dx+\frac {5}{21} \int \frac {e^x \left (-21-11 x+5 x^2\right )}{5 x^2-21 \log (x)} \, dx\\ &=-\frac {5 e^x}{21}+\frac {5}{21} \int \left (-\frac {441 e^x}{\left (5 x^2-21 \log (x)\right )^2}+\frac {105 e^x x}{\left (5 x^2-21 \log (x)\right )^2}+\frac {210 e^x x^2}{\left (5 x^2-21 \log (x)\right )^2}-\frac {50 e^x x^3}{\left (5 x^2-21 \log (x)\right )^2}\right ) \, dx+\frac {5}{21} \int \left (-\frac {21 e^x}{5 x^2-21 \log (x)}-\frac {11 e^x x}{5 x^2-21 \log (x)}+\frac {5 e^x x^2}{5 x^2-21 \log (x)}\right ) \, dx\\ &=-\frac {5 e^x}{21}+\frac {25}{21} \int \frac {e^x x^2}{5 x^2-21 \log (x)} \, dx-\frac {55}{21} \int \frac {e^x x}{5 x^2-21 \log (x)} \, dx-5 \int \frac {e^x}{5 x^2-21 \log (x)} \, dx-\frac {250}{21} \int \frac {e^x x^3}{\left (5 x^2-21 \log (x)\right )^2} \, dx+25 \int \frac {e^x x}{\left (5 x^2-21 \log (x)\right )^2} \, dx+50 \int \frac {e^x x^2}{\left (5 x^2-21 \log (x)\right )^2} \, dx-105 \int \frac {e^x}{\left (5 x^2-21 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.37, size = 23, normalized size = 0.85 \begin {gather*} -\frac {5 e^x (x-\log (x))}{5 x^2-21 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 25, normalized size = 0.93 \begin {gather*} -\frac {5 \, {\left (x e^{x} - e^{x} \log \relax (x)\right )}}{5 \, x^{2} - 21 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 25, normalized size = 0.93 \begin {gather*} -\frac {5 \, {\left (x e^{x} - e^{x} \log \relax (x)\right )}}{5 \, x^{2} - 21 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 28, normalized size = 1.04
method | result | size |
risch | \(-\frac {5 \,{\mathrm e}^{x}}{21}+\frac {5 \left (5 x -21\right ) x \,{\mathrm e}^{x}}{21 \left (5 x^{2}-21 \ln \relax (x )\right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 22, normalized size = 0.81 \begin {gather*} -\frac {5 \, {\left (x - \log \relax (x)\right )} e^{x}}{5 \, x^{2} - 21 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.05, size = 22, normalized size = 0.81 \begin {gather*} \frac {5\,{\mathrm {e}}^x\,\left (x-\ln \relax (x)\right )}{21\,\ln \relax (x)-5\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 20, normalized size = 0.74 \begin {gather*} \frac {\left (- 5 x + 5 \log {\relax (x )}\right ) e^{x}}{5 x^{2} - 21 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________