Optimal. Leaf size=28 \[ 2 x-\frac {1}{16} \left (-e^x+\log ^9\left (-\frac {1}{x+x^2}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 2.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (16 x+16 x^2+e^{2 x} \left (-x-x^2\right )\right ) \log \left (-\frac {1}{x+x^2}\right )+(9+18 x) \log ^{18}\left (-\frac {1}{x+x^2}\right )+\log ^9\left (-\frac {1}{x+x^2}\right ) \left (e^x (-9-18 x)+e^x \left (x+x^2\right ) \log \left (-\frac {1}{x+x^2}\right )\right )}{\left (8 x+8 x^2\right ) \log \left (-\frac {1}{x+x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (16 x+16 x^2+e^{2 x} \left (-x-x^2\right )\right ) \log \left (-\frac {1}{x+x^2}\right )+(9+18 x) \log ^{18}\left (-\frac {1}{x+x^2}\right )+\log ^9\left (-\frac {1}{x+x^2}\right ) \left (e^x (-9-18 x)+e^x \left (x+x^2\right ) \log \left (-\frac {1}{x+x^2}\right )\right )}{x (8+8 x) \log \left (-\frac {1}{x+x^2}\right )} \, dx\\ &=\int \frac {-\left (\left (-16+e^{2 x}\right ) x (1+x)\right )-9 e^x (1+2 x) \log ^8\left (-\frac {1}{x+x^2}\right )+e^x x (1+x) \log ^9\left (-\frac {1}{x+x^2}\right )+9 (1+2 x) \log ^{17}\left (-\frac {1}{x+x^2}\right )}{8 x (1+x)} \, dx\\ &=\frac {1}{8} \int \frac {-\left (\left (-16+e^{2 x}\right ) x (1+x)\right )-9 e^x (1+2 x) \log ^8\left (-\frac {1}{x+x^2}\right )+e^x x (1+x) \log ^9\left (-\frac {1}{x+x^2}\right )+9 (1+2 x) \log ^{17}\left (-\frac {1}{x+x^2}\right )}{x (1+x)} \, dx\\ &=\frac {1}{8} \int \left (-e^{2 x}+\frac {e^x \log ^8\left (-\frac {1}{x (1+x)}\right ) \left (-9-18 x+x \log \left (-\frac {1}{x+x^2}\right )+x^2 \log \left (-\frac {1}{x+x^2}\right )\right )}{x (1+x)}+\frac {16 x+16 x^2+9 \log ^{17}\left (-\frac {1}{x+x^2}\right )+18 x \log ^{17}\left (-\frac {1}{x+x^2}\right )}{x (1+x)}\right ) \, dx\\ &=-\left (\frac {1}{8} \int e^{2 x} \, dx\right )+\frac {1}{8} \int \frac {e^x \log ^8\left (-\frac {1}{x (1+x)}\right ) \left (-9-18 x+x \log \left (-\frac {1}{x+x^2}\right )+x^2 \log \left (-\frac {1}{x+x^2}\right )\right )}{x (1+x)} \, dx+\frac {1}{8} \int \frac {16 x+16 x^2+9 \log ^{17}\left (-\frac {1}{x+x^2}\right )+18 x \log ^{17}\left (-\frac {1}{x+x^2}\right )}{x (1+x)} \, dx\\ &=-\frac {e^{2 x}}{16}+\frac {1}{8} \int \left (16+\frac {9 (1+2 x) \log ^{17}\left (-\frac {1}{x (1+x)}\right )}{x (1+x)}\right ) \, dx+\frac {1}{8} \int \frac {e^x \log ^8\left (-\frac {1}{x (1+x)}\right ) \left (-9 (1+2 x)+x (1+x) \log \left (-\frac {1}{x+x^2}\right )\right )}{x (1+x)} \, dx\\ &=-\frac {e^{2 x}}{16}+2 x+\frac {1}{8} \int \left (\frac {9 e^x (-1-2 x) \log ^8\left (-\frac {1}{x (1+x)}\right )}{x (1+x)}+e^x \log ^9\left (-\frac {1}{x (1+x)}\right )\right ) \, dx+\frac {9}{8} \int \frac {(1+2 x) \log ^{17}\left (-\frac {1}{x (1+x)}\right )}{x (1+x)} \, dx\\ &=-\frac {e^{2 x}}{16}+2 x+\frac {1}{8} \int e^x \log ^9\left (-\frac {1}{x (1+x)}\right ) \, dx+\frac {9}{8} \int \frac {e^x (-1-2 x) \log ^8\left (-\frac {1}{x (1+x)}\right )}{x (1+x)} \, dx+\frac {9}{8} \int \left (\frac {\log ^{17}\left (-\frac {1}{x (1+x)}\right )}{x}+\frac {\log ^{17}\left (-\frac {1}{x (1+x)}\right )}{1+x}\right ) \, dx\\ &=-\frac {e^{2 x}}{16}+2 x+\frac {1}{8} \int e^x \log ^9\left (-\frac {1}{x (1+x)}\right ) \, dx+\frac {9}{8} \int \frac {\log ^{17}\left (-\frac {1}{x (1+x)}\right )}{x} \, dx+\frac {9}{8} \int \frac {\log ^{17}\left (-\frac {1}{x (1+x)}\right )}{1+x} \, dx+\frac {9}{8} \int \left (\frac {e^x \log ^8\left (-\frac {1}{x (1+x)}\right )}{-1-x}-\frac {e^x \log ^8\left (-\frac {1}{x (1+x)}\right )}{x}\right ) \, dx\\ &=-\frac {e^{2 x}}{16}+2 x+\frac {1}{8} \int e^x \log ^9\left (-\frac {1}{x (1+x)}\right ) \, dx+\frac {9}{8} \int \frac {e^x \log ^8\left (-\frac {1}{x (1+x)}\right )}{-1-x} \, dx-\frac {9}{8} \int \frac {e^x \log ^8\left (-\frac {1}{x (1+x)}\right )}{x} \, dx+\frac {9}{8} \int \frac {\log ^{17}\left (-\frac {1}{x (1+x)}\right )}{x} \, dx+\frac {9}{8} \int \frac {\log ^{17}\left (-\frac {1}{x (1+x)}\right )}{1+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 53, normalized size = 1.89 \begin {gather*} \frac {1}{8} e^x \log ^9\left (-\frac {1}{x+x^2}\right )+\frac {1}{8} \left (-\frac {e^{2 x}}{2}+16 x-\frac {1}{2} \log ^{18}\left (-\frac {1}{x+x^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 40, normalized size = 1.43 \begin {gather*} -\frac {1}{16} \, \log \left (-\frac {1}{x^{2} + x}\right )^{18} + \frac {1}{8} \, e^{x} \log \left (-\frac {1}{x^{2} + x}\right )^{9} + 2 \, x - \frac {1}{16} \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\left (18 x +9\right ) \ln \left (-\frac {1}{x^{2}+x}\right )^{18}+\left (\left (x^{2}+x \right ) {\mathrm e}^{x} \ln \left (-\frac {1}{x^{2}+x}\right )+\left (-18 x -9\right ) {\mathrm e}^{x}\right ) \ln \left (-\frac {1}{x^{2}+x}\right )^{9}+\left (\left (-x^{2}-x \right ) {\mathrm e}^{2 x}+16 x^{2}+16 x \right ) \ln \left (-\frac {1}{x^{2}+x}\right )}{\left (8 x^{2}+8 x \right ) \ln \left (-\frac {1}{x^{2}+x}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {1}{16} \, \log \relax (x)^{18} - \frac {21879}{8} \, \log \relax (x)^{8} \log \left (-x - 1\right )^{10} - 1989 \, \log \relax (x)^{7} \log \left (-x - 1\right )^{11} - \frac {4641}{4} \, \log \relax (x)^{6} \log \left (-x - 1\right )^{12} - \frac {1071}{2} \, \log \relax (x)^{5} \log \left (-x - 1\right )^{13} - \frac {765}{4} \, \log \relax (x)^{4} \log \left (-x - 1\right )^{14} - 51 \, \log \relax (x)^{3} \log \left (-x - 1\right )^{15} - \frac {153}{16} \, \log \relax (x)^{2} \log \left (-x - 1\right )^{16} - \frac {9}{8} \, \log \relax (x) \log \left (-x - 1\right )^{17} - \frac {1}{16} \, \log \left (-x - 1\right )^{18} - \frac {1}{8} \, e^{x} \log \relax (x)^{9} - \frac {1}{8} \, {\left (24310 \, \log \relax (x)^{9} + e^{x}\right )} \log \left (-x - 1\right )^{9} - \frac {9}{8} \, {\left (2431 \, \log \relax (x)^{10} + e^{x} \log \relax (x)\right )} \log \left (-x - 1\right )^{8} - \frac {9}{2} \, {\left (442 \, \log \relax (x)^{11} + e^{x} \log \relax (x)^{2}\right )} \log \left (-x - 1\right )^{7} - \frac {21}{4} \, {\left (221 \, \log \relax (x)^{12} + 2 \, e^{x} \log \relax (x)^{3}\right )} \log \left (-x - 1\right )^{6} - \frac {63}{4} \, {\left (34 \, \log \relax (x)^{13} + e^{x} \log \relax (x)^{4}\right )} \log \left (-x - 1\right )^{5} - \frac {9}{4} \, {\left (85 \, \log \relax (x)^{14} + 7 \, e^{x} \log \relax (x)^{5}\right )} \log \left (-x - 1\right )^{4} - \frac {3}{2} \, {\left (34 \, \log \relax (x)^{15} + 7 \, e^{x} \log \relax (x)^{6}\right )} \log \left (-x - 1\right )^{3} - \frac {9}{16} \, {\left (17 \, \log \relax (x)^{16} + 8 \, e^{x} \log \relax (x)^{7}\right )} \log \left (-x - 1\right )^{2} + \frac {1}{8} \, e^{\left (-2\right )} E_{1}\left (-2 \, x - 2\right ) - \frac {9}{8} \, {\left (\log \relax (x)^{17} + e^{x} \log \relax (x)^{8}\right )} \log \left (-x - 1\right ) + 2 \, x - \frac {1}{8} \, \int \frac {x e^{\left (2 \, x\right )}}{x + 1}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.48, size = 40, normalized size = 1.43 \begin {gather*} -\frac {{\ln \left (-\frac {1}{x^2+x}\right )}^{18}}{16}+\frac {{\mathrm {e}}^x\,{\ln \left (-\frac {1}{x^2+x}\right )}^9}{8}+2\,x-\frac {{\mathrm {e}}^{2\,x}}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 10.43, size = 39, normalized size = 1.39 \begin {gather*} 2 x - \frac {e^{2 x}}{16} + \frac {e^{x} \log {\left (- \frac {1}{x^{2} + x} \right )}^{9}}{8} - \frac {\log {\left (- \frac {1}{x^{2} + x} \right )}^{18}}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________