Optimal. Leaf size=30 \[ e^{4 \left (-4-e^{3 x}+x\right )}+x+\frac {x+3 x \left (x+x^2\right )}{x} \]
________________________________________________________________________________________
Rubi [C] time = 0.14, antiderivative size = 81, normalized size of antiderivative = 2.70, number of steps used = 7, number of rules used = 4, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {2282, 12, 2226, 2218} \begin {gather*} 3 x^2+4 x-\frac {e^{4 x-16} \Gamma \left (\frac {4}{3},4 e^{3 x}\right )}{3\ 2^{2/3} \left (e^{3 x}\right )^{4/3}}+\frac {e^{7 x-16} \Gamma \left (\frac {7}{3},4 e^{3 x}\right )}{4\ 2^{2/3} \left (e^{3 x}\right )^{7/3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2218
Rule 2226
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=4 x+3 x^2+\int e^{-16-4 e^{3 x}+4 x} \left (4-12 e^{3 x}\right ) \, dx\\ &=4 x+3 x^2+\operatorname {Subst}\left (\int 4 e^{-16-4 x^3} x^3 \left (1-3 x^3\right ) \, dx,x,e^x\right )\\ &=4 x+3 x^2+4 \operatorname {Subst}\left (\int e^{-16-4 x^3} x^3 \left (1-3 x^3\right ) \, dx,x,e^x\right )\\ &=4 x+3 x^2+4 \operatorname {Subst}\left (\int \left (e^{-16-4 x^3} x^3-3 e^{-16-4 x^3} x^6\right ) \, dx,x,e^x\right )\\ &=4 x+3 x^2+4 \operatorname {Subst}\left (\int e^{-16-4 x^3} x^3 \, dx,x,e^x\right )-12 \operatorname {Subst}\left (\int e^{-16-4 x^3} x^6 \, dx,x,e^x\right )\\ &=4 x+3 x^2-\frac {e^{-16+4 x} \Gamma \left (\frac {4}{3},4 e^{3 x}\right )}{3\ 2^{2/3} \left (e^{3 x}\right )^{4/3}}+\frac {e^{-16+7 x} \Gamma \left (\frac {7}{3},4 e^{3 x}\right )}{4\ 2^{2/3} \left (e^{3 x}\right )^{7/3}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 23, normalized size = 0.77 \begin {gather*} e^{-16-4 e^{3 x}+4 x}+4 x+3 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 21, normalized size = 0.70 \begin {gather*} 3 \, x^{2} + 4 \, x + e^{\left (4 \, x - 4 \, e^{\left (3 \, x\right )} - 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 21, normalized size = 0.70 \begin {gather*} 3 \, x^{2} + 4 \, x + e^{\left (4 \, x - 4 \, e^{\left (3 \, x\right )} - 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 22, normalized size = 0.73
method | result | size |
default | \(4 x +{\mathrm e}^{-4 \,{\mathrm e}^{3 x}+4 x -16}+3 x^{2}\) | \(22\) |
norman | \(4 x +{\mathrm e}^{-4 \,{\mathrm e}^{3 x}+4 x -16}+3 x^{2}\) | \(22\) |
risch | \(4 x +{\mathrm e}^{-4 \,{\mathrm e}^{3 x}+4 x -16}+3 x^{2}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 21, normalized size = 0.70 \begin {gather*} 3 \, x^{2} + 4 \, x + e^{\left (4 \, x - 4 \, e^{\left (3 \, x\right )} - 16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 23, normalized size = 0.77 \begin {gather*} 4\,x+3\,x^2+{\mathrm {e}}^{-4\,{\mathrm {e}}^{3\,x}}\,{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{-16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 0.67 \begin {gather*} 3 x^{2} + 4 x + e^{4 x - 4 e^{3 x} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________