Optimal. Leaf size=33 \[ -2-x \log \left (\log \left (\frac {1}{5} \left (x+\frac {e^{e^{-x} x^2}-x}{\log (x)}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 18.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-e^x x+e^x x \log (x)-e^x x \log ^2(x)+e^{e^{-x} x^2} \left (e^x+\left (-2 x^2+x^3\right ) \log (x)\right )+\left (-e^{x+e^{-x} x^2} \log (x)+e^x x \log (x)-e^x x \log ^2(x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right ) \log \left (\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )\right )}{\left (e^{x+e^{-x} x^2} \log (x)-e^x x \log (x)+e^x x \log ^2(x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (-e^x x+e^x x \log (x)-e^x x \log ^2(x)+e^{e^{-x} x^2} \left (e^x+\left (-2 x^2+x^3\right ) \log (x)\right )+\left (-e^{x+e^{-x} x^2} \log (x)+e^x x \log (x)-e^x x \log ^2(x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right ) \log \left (\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )\right )\right )}{\log (x) \left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx\\ &=\int \left (-\frac {e^{-x} x \left (2 x^2-x^3+e^x \log (x)-2 x^2 \log (x)+x^3 \log (x)\right )}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )}-\frac {e^{-x} \left (-e^x+2 x^2 \log (x)-x^3 \log (x)+e^x \log (x) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right ) \log \left (\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )\right )\right )}{\log (x) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )}\right ) \, dx\\ &=-\int \frac {e^{-x} x \left (2 x^2-x^3+e^x \log (x)-2 x^2 \log (x)+x^3 \log (x)\right )}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx-\int \frac {e^{-x} \left (-e^x+2 x^2 \log (x)-x^3 \log (x)+e^x \log (x) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right ) \log \left (\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )\right )\right )}{\log (x) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx\\ &=-\int \left (\frac {2 e^{-x} x^3}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )}-\frac {e^{-x} x^4}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )}+\frac {x \log (x)}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )}-\frac {2 e^{-x} x^3 \log (x)}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )}+\frac {e^{-x} x^4 \log (x)}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )}\right ) \, dx-\int \left (-\frac {e^{-x} (-2+x) x^2}{\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )}+\frac {-1+\log (x) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right ) \log \left (\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )\right )}{\log (x) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {e^{-x} x^3}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx\right )+2 \int \frac {e^{-x} x^3 \log (x)}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx+\int \frac {e^{-x} (-2+x) x^2}{\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx+\int \frac {e^{-x} x^4}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx-\int \frac {x \log (x)}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx-\int \frac {e^{-x} x^4 \log (x)}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx-\int \frac {-1+\log (x) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right ) \log \left (\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )\right )}{\log (x) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx\\ &=-\left (2 \int \frac {e^{-x} x^3}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx\right )+2 \int \frac {e^{-x} x^3 \log (x)}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx+\int \left (-\frac {2 e^{-x} x^2}{\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )}+\frac {e^{-x} x^3}{\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )}\right ) \, dx+\int \frac {e^{-x} x^4}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx-\int \frac {x \log (x)}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx-\int \frac {e^{-x} x^4 \log (x)}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx-\int \left (-\frac {1}{\log (x) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )}+\log \left (\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )\right )\right ) \, dx\\ &=-\left (2 \int \frac {e^{-x} x^2}{\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx\right )-2 \int \frac {e^{-x} x^3}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx+2 \int \frac {e^{-x} x^3 \log (x)}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx+\int \frac {e^{-x} x^3}{\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx+\int \frac {1}{\log (x) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx+\int \frac {e^{-x} x^4}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx-\int \frac {x \log (x)}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx-\int \frac {e^{-x} x^4 \log (x)}{\left (e^{e^{-x} x^2}-x+x \log (x)\right ) \log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )} \, dx-\int \log \left (\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 32, normalized size = 0.97 \begin {gather*} -x \log \left (\log \left (\frac {e^{e^{-x} x^2}-x+x \log (x)}{5 \log (x)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 41, normalized size = 1.24 \begin {gather*} -x \log \left (\log \left (\frac {{\left (x e^{x} \log \relax (x) - x e^{x} + e^{\left ({\left (x^{2} + x e^{x}\right )} e^{\left (-x\right )}\right )}\right )} e^{\left (-x\right )}}{5 \, \log \relax (x)}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {x e^{x} \log \relax (x)^{2} - x e^{x} \log \relax (x) + {\left (x e^{x} \log \relax (x)^{2} - x e^{x} \log \relax (x) + e^{\left (x^{2} e^{\left (-x\right )} + x\right )} \log \relax (x)\right )} \log \left (\frac {x \log \relax (x) - x + e^{\left (x^{2} e^{\left (-x\right )}\right )}}{5 \, \log \relax (x)}\right ) \log \left (\log \left (\frac {x \log \relax (x) - x + e^{\left (x^{2} e^{\left (-x\right )}\right )}}{5 \, \log \relax (x)}\right )\right ) - {\left ({\left (x^{3} - 2 \, x^{2}\right )} \log \relax (x) + e^{x}\right )} e^{\left (x^{2} e^{\left (-x\right )}\right )} + x e^{x}}{{\left (x e^{x} \log \relax (x)^{2} - x e^{x} \log \relax (x) + e^{\left (x^{2} e^{\left (-x\right )} + x\right )} \log \relax (x)\right )} \log \left (\frac {x \log \relax (x) - x + e^{\left (x^{2} e^{\left (-x\right )}\right )}}{5 \, \log \relax (x)}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.29, size = 142, normalized size = 4.30
method | result | size |
risch | \(-x \ln \left (-\ln \relax (5)-\ln \left (\ln \relax (x )\right )+\ln \left (\left (\ln \relax (x )-1\right ) x +{\mathrm e}^{x^{2} {\mathrm e}^{-x}}\right )-\frac {i \pi \,\mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-1\right ) x +{\mathrm e}^{x^{2} {\mathrm e}^{-x}}\right )}{\ln \relax (x )}\right ) \left (-\mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-1\right ) x +{\mathrm e}^{x^{2} {\mathrm e}^{-x}}\right )}{\ln \relax (x )}\right )+\mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )\right ) \left (-\mathrm {csgn}\left (\frac {i \left (\left (\ln \relax (x )-1\right ) x +{\mathrm e}^{x^{2} {\mathrm e}^{-x}}\right )}{\ln \relax (x )}\right )+\mathrm {csgn}\left (i \left (\left (\ln \relax (x )-1\right ) x +{\mathrm e}^{x^{2} {\mathrm e}^{-x}}\right )\right )\right )}{2}\right )\) | \(142\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 32, normalized size = 0.97 \begin {gather*} -x \log \left (-\log \relax (5) + \log \left (x \log \relax (x) - x + e^{\left (x^{2} e^{\left (-x\right )}\right )}\right ) - \log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.61, size = 28, normalized size = 0.85 \begin {gather*} -x\,\ln \left (\ln \left (\frac {{\mathrm {e}}^{x^2\,{\mathrm {e}}^{-x}}-x+x\,\ln \relax (x)}{5\,\ln \relax (x)}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________