Optimal. Leaf size=24 \[ \log ^2\left (4+\left (-e^{2^{8 x}}+\frac {x}{5}\right )^2+\log (2)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 38, normalized size of antiderivative = 1.58, number of steps used = 1, number of rules used = 2, integrand size = 114, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.018, Rules used = {6684, 6686} \begin {gather*} \log ^2\left (\frac {1}{25} \left (x^2-10 e^{2^{8 x}} x+25 e^{2^{8 x+1}}+25 (4+\log (2))\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6684
Rule 6686
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\log ^2\left (\frac {1}{25} \left (25 e^{2^{1+8 x}}-10 e^{2^{8 x}} x+x^2+25 (4+\log (2))\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 7.01, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (4 x+25\ 2^{5+8 x} e^{2^{1+8 x}} \log (2)+e^{2^{8 x}} \left (-20-5\ 2^{5+8 x} x \log (2)\right )\right ) \log \left (\frac {1}{25} \left (100+25 e^{2^{1+8 x}}-10 e^{2^{8 x}} x+x^2+25 \log (2)\right )\right )}{100+25 e^{2^{1+8 x}}-10 e^{2^{8 x}} x+x^2+25 \log (2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 29, normalized size = 1.21 \begin {gather*} \log \left (\frac {1}{25} \, x^{2} - \frac {2}{5} \, x e^{\left (2^{8 \, x}\right )} + e^{\left (2 \cdot 2^{8 \, x}\right )} + \log \relax (2) + 4\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left (200 \cdot 2^{8 \, x} e^{\left (2 \cdot 2^{8 \, x}\right )} \log \relax (2) - 5 \, {\left (8 \cdot 2^{8 \, x} x \log \relax (2) + 1\right )} e^{\left (2^{8 \, x}\right )} + x\right )} \log \left (\frac {1}{25} \, x^{2} - \frac {2}{5} \, x e^{\left (2^{8 \, x}\right )} + e^{\left (2 \cdot 2^{8 \, x}\right )} + \log \relax (2) + 4\right )}{x^{2} - 10 \, x e^{\left (2^{8 \, x}\right )} + 25 \, e^{\left (2 \cdot 2^{8 \, x}\right )} + 25 \, \log \relax (2) + 100}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 26, normalized size = 1.08
method | result | size |
risch | \(\ln \left ({\mathrm e}^{2 \,256^{x}}-\frac {2 x \,{\mathrm e}^{256^{x}}}{5}+\ln \relax (2)+\frac {x^{2}}{25}+4\right )^{2}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 92, normalized size = 3.83 \begin {gather*} -\log \left (x^{2} - 10 \, x e^{\left (2^{8 \, x}\right )} + 25 \, e^{\left (2 \cdot 2^{8 \, x}\right )} + 25 \, \log \relax (2) + 100\right )^{2} + 2 \, \log \left (x^{2} - 10 \, x e^{\left (2^{8 \, x}\right )} + 25 \, e^{\left (2 \cdot 2^{8 \, x}\right )} + 25 \, \log \relax (2) + 100\right ) \log \left (\frac {1}{25} \, x^{2} - \frac {2}{5} \, x e^{\left (2^{8 \, x}\right )} + e^{\left (2^{8 \, x + 1}\right )} + \log \relax (2) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.25, size = 29, normalized size = 1.21 \begin {gather*} {\ln \left (\ln \relax (2)+{\mathrm {e}}^{2\,2^{8\,x}}-\frac {2\,x\,{\mathrm {e}}^{2^{8\,x}}}{5}+\frac {x^2}{25}+4\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.10, size = 39, normalized size = 1.62 \begin {gather*} \log {\left (\frac {x^{2}}{25} - \frac {2 x e^{e^{8 x \log {\relax (2 )}}}}{5} + e^{2 e^{8 x \log {\relax (2 )}}} + \log {\relax (2 )} + 4 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________