Optimal. Leaf size=13 \[ e^{5+\frac {1}{-2 x+x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 1.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1-10 x+5 x^2}{-2 x+x^2}} (2-2 x)}{4 x^2-4 x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1-10 x+5 x^2}{-2 x+x^2}} (2-2 x)}{x^2 \left (4-4 x+x^2\right )} \, dx\\ &=\int \frac {e^{\frac {1-10 x+5 x^2}{-2 x+x^2}} (2-2 x)}{(-2+x)^2 x^2} \, dx\\ &=\int \frac {e^{\frac {1-10 x+5 x^2}{(-2+x) x}} (2-2 x)}{(2-x)^2 x^2} \, dx\\ &=\int \left (-\frac {e^{\frac {1-10 x+5 x^2}{(-2+x) x}}}{2 (-2+x)^2}+\frac {e^{\frac {1-10 x+5 x^2}{(-2+x) x}}}{2 x^2}\right ) \, dx\\ &=-\left (\frac {1}{2} \int \frac {e^{\frac {1-10 x+5 x^2}{(-2+x) x}}}{(-2+x)^2} \, dx\right )+\frac {1}{2} \int \frac {e^{\frac {1-10 x+5 x^2}{(-2+x) x}}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 20, normalized size = 1.54 \begin {gather*} e^{5+\frac {1}{2 (-2+x)}-\frac {1}{2 x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 21, normalized size = 1.62 \begin {gather*} e^{\left (\frac {5 \, x^{2} - 10 \, x + 1}{x^{2} - 2 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 37, normalized size = 2.85 \begin {gather*} e^{\left (\frac {5 \, x^{2}}{x^{2} - 2 \, x} - \frac {10 \, x}{x^{2} - 2 \, x} + \frac {1}{x^{2} - 2 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 21, normalized size = 1.62
method | result | size |
gosper | \({\mathrm e}^{\frac {5 x^{2}-10 x +1}{\left (x -2\right ) x}}\) | \(21\) |
risch | \({\mathrm e}^{\frac {5 x^{2}-10 x +1}{\left (x -2\right ) x}}\) | \(21\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {5 x^{2}-10 x +1}{x^{2}-2 x}}-2 x \,{\mathrm e}^{\frac {5 x^{2}-10 x +1}{x^{2}-2 x}}}{\left (x -2\right ) x}\) | \(60\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 15, normalized size = 1.15 \begin {gather*} e^{\left (\frac {1}{2 \, {\left (x - 2\right )}} - \frac {1}{2 \, x} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.42, size = 32, normalized size = 2.46 \begin {gather*} {\mathrm {e}}^{\frac {5\,x}{x-2}}\,{\mathrm {e}}^{-\frac {1}{2\,x-x^2}}\,{\mathrm {e}}^{-\frac {10}{x-2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 17, normalized size = 1.31 \begin {gather*} e^{\frac {5 x^{2} - 10 x + 1}{x^{2} - 2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________