Optimal. Leaf size=34 \[ -\frac {e^{\left (-e^4+x\right ) \left (-2+\log ^4(x)\right )}}{5 (2-x)}+\frac {e}{x}+x \]
________________________________________________________________________________________
Rubi [F] time = 6.19, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {20 x^2-20 x^3+5 x^4+e \left (-20+20 x-5 x^2\right )+e^{2 e^4-2 x+\left (-e^4+x\right ) \log ^4(x)} \left (3 x^2-2 x^3+\left (-8 x^2+4 x^3+e^4 \left (8 x-4 x^2\right )\right ) \log ^3(x)+\left (-2 x^2+x^3\right ) \log ^4(x)\right )}{20 x^2-20 x^3+5 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {20 x^2-20 x^3+5 x^4+e \left (-20+20 x-5 x^2\right )+e^{2 e^4-2 x+\left (-e^4+x\right ) \log ^4(x)} \left (3 x^2-2 x^3+\left (-8 x^2+4 x^3+e^4 \left (8 x-4 x^2\right )\right ) \log ^3(x)+\left (-2 x^2+x^3\right ) \log ^4(x)\right )}{x^2 \left (20-20 x+5 x^2\right )} \, dx\\ &=\int \frac {20 x^2-20 x^3+5 x^4+e \left (-20+20 x-5 x^2\right )+e^{2 e^4-2 x+\left (-e^4+x\right ) \log ^4(x)} \left (3 x^2-2 x^3+\left (-8 x^2+4 x^3+e^4 \left (8 x-4 x^2\right )\right ) \log ^3(x)+\left (-2 x^2+x^3\right ) \log ^4(x)\right )}{5 (-2+x)^2 x^2} \, dx\\ &=\frac {1}{5} \int \frac {20 x^2-20 x^3+5 x^4+e \left (-20+20 x-5 x^2\right )+e^{2 e^4-2 x+\left (-e^4+x\right ) \log ^4(x)} \left (3 x^2-2 x^3+\left (-8 x^2+4 x^3+e^4 \left (8 x-4 x^2\right )\right ) \log ^3(x)+\left (-2 x^2+x^3\right ) \log ^4(x)\right )}{(-2+x)^2 x^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {5 \left (e-x^2\right )}{x^2}+\frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )} \left (3 x-2 x^2+8 e^4 \log ^3(x)-8 \left (1+\frac {e^4}{2}\right ) x \log ^3(x)+4 x^2 \log ^3(x)-2 x \log ^4(x)+x^2 \log ^4(x)\right )}{(2-x)^2 x}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )} \left (3 x-2 x^2+8 e^4 \log ^3(x)-8 \left (1+\frac {e^4}{2}\right ) x \log ^3(x)+4 x^2 \log ^3(x)-2 x \log ^4(x)+x^2 \log ^4(x)\right )}{(2-x)^2 x} \, dx-\int \frac {e-x^2}{x^2} \, dx\\ &=\frac {1}{5} \int \frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )} \left ((3-2 x) x+4 (-2+x) \left (-e^4+x\right ) \log ^3(x)+(-2+x) x \log ^4(x)\right )}{(2-x)^2 x} \, dx-\int \left (-1+\frac {e}{x^2}\right ) \, dx\\ &=\frac {e}{x}+x+\frac {1}{5} \int \left (\frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )} (3-2 x)}{(-2+x)^2}+\frac {4 e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )} \left (-e^4+x\right ) \log ^3(x)}{(-2+x) x}+\frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )} \log ^4(x)}{-2+x}\right ) \, dx\\ &=\frac {e}{x}+x+\frac {1}{5} \int \frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )} (3-2 x)}{(-2+x)^2} \, dx+\frac {1}{5} \int \frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )} \log ^4(x)}{-2+x} \, dx+\frac {4}{5} \int \frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )} \left (-e^4+x\right ) \log ^3(x)}{(-2+x) x} \, dx\\ &=\frac {e}{x}+x+\frac {1}{5} \int \left (-\frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )}}{(-2+x)^2}-\frac {2 e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )}}{-2+x}\right ) \, dx+\frac {1}{5} \int \frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )} \log ^4(x)}{-2+x} \, dx+\frac {4}{5} \int \left (-\frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )} \left (-2+e^4\right ) \log ^3(x)}{2 (-2+x)}+\frac {e^{4-\left (e^4-x\right ) \left (-2+\log ^4(x)\right )} \log ^3(x)}{2 x}\right ) \, dx\\ &=\frac {e}{x}+x-\frac {1}{5} \int \frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )}}{(-2+x)^2} \, dx+\frac {1}{5} \int \frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )} \log ^4(x)}{-2+x} \, dx-\frac {2}{5} \int \frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )}}{-2+x} \, dx+\frac {2}{5} \int \frac {e^{4-\left (e^4-x\right ) \left (-2+\log ^4(x)\right )} \log ^3(x)}{x} \, dx+\frac {1}{5} \left (2 \left (2-e^4\right )\right ) \int \frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )} \log ^3(x)}{-2+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 37, normalized size = 1.09 \begin {gather*} \frac {1}{5} \left (\frac {e^{-\left (\left (e^4-x\right ) \left (-2+\log ^4(x)\right )\right )}}{-2+x}+\frac {5 e}{x}+5 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 51, normalized size = 1.50 \begin {gather*} \frac {5 \, x^{3} - 10 \, x^{2} + 5 \, {\left (x - 2\right )} e + x e^{\left ({\left (x - e^{4}\right )} \log \relax (x)^{4} - 2 \, x + 2 \, e^{4}\right )}}{5 \, {\left (x^{2} - 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {5 \, x^{4} - 20 \, x^{3} + 20 \, x^{2} - 5 \, {\left (x^{2} - 4 \, x + 4\right )} e + {\left ({\left (x^{3} - 2 \, x^{2}\right )} \log \relax (x)^{4} + 4 \, {\left (x^{3} - 2 \, x^{2} - {\left (x^{2} - 2 \, x\right )} e^{4}\right )} \log \relax (x)^{3} - 2 \, x^{3} + 3 \, x^{2}\right )} e^{\left ({\left (x - e^{4}\right )} \log \relax (x)^{4} - 2 \, x + 2 \, e^{4}\right )}}{5 \, {\left (x^{4} - 4 \, x^{3} + 4 \, x^{2}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 31, normalized size = 0.91
method | result | size |
risch | \(x +\frac {{\mathrm e}}{x}+\frac {{\mathrm e}^{-\left (\ln \relax (x )^{4}-2\right ) \left ({\mathrm e}^{4}-x \right )}}{5 x -10}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 86, normalized size = 2.53 \begin {gather*} {\left (\frac {2 \, {\left (x - 1\right )}}{x^{2} - 2 \, x} + \log \left (x - 2\right ) - \log \relax (x)\right )} e - {\left (\frac {2}{x - 2} + \log \left (x - 2\right ) - \log \relax (x)\right )} e + x + \frac {e}{x - 2} + \frac {e^{\left (x \log \relax (x)^{4} - e^{4} \log \relax (x)^{4} - 2 \, x + 2 \, e^{4}\right )}}{5 \, {\left (x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.73, size = 41, normalized size = 1.21 \begin {gather*} x+\frac {\mathrm {e}}{x}+\frac {{\mathrm {e}}^{2\,{\mathrm {e}}^4}\,{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{-{\mathrm {e}}^4\,{\ln \relax (x)}^4}\,{\mathrm {e}}^{x\,{\ln \relax (x)}^4}}{5\,\left (x-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 31, normalized size = 0.91 \begin {gather*} x + \frac {e^{- 2 x + \left (x - e^{4}\right ) \log {\relax (x )}^{4} + 2 e^{4}}}{5 x - 10} + \frac {e}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________