Optimal. Leaf size=29 \[ 3+2 x-\log \left (x^2+\log (x)+\frac {4}{\log \left (8 e^{-x/4} x\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.79, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4-x+8 x \log \left (8 e^{-x/4} x\right )+\left (-1-2 x^2+2 x^3+2 x \log (x)\right ) \log ^2\left (8 e^{-x/4} x\right )}{4 x \log \left (8 e^{-x/4} x\right )+\left (x^3+x \log (x)\right ) \log ^2\left (8 e^{-x/4} x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-1-2 x^2+2 x^3+2 x \log (x)}{x \left (x^2+\log (x)\right )}+\frac {4-x}{4 x \log \left (8 e^{-x/4} x\right )}+\frac {16+32 x^2-4 x^4+x^5-8 x^2 \log (x)+2 x^3 \log (x)-4 \log ^2(x)+x \log ^2(x)}{4 x \left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )}\right ) \, dx\\ &=\frac {1}{4} \int \frac {4-x}{x \log \left (8 e^{-x/4} x\right )} \, dx+\frac {1}{4} \int \frac {16+32 x^2-4 x^4+x^5-8 x^2 \log (x)+2 x^3 \log (x)-4 \log ^2(x)+x \log ^2(x)}{x \left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )} \, dx+\int \frac {-1-2 x^2+2 x^3+2 x \log (x)}{x \left (x^2+\log (x)\right )} \, dx\\ &=\log \left (\log \left (8 e^{-x/4} x\right )\right )+\frac {1}{4} \int \frac {16+32 x^2-4 x^4+x^5+2 (-4+x) x^2 \log (x)+(-4+x) \log ^2(x)}{x \left (x^2+\log (x)\right ) \left (4+\left (x^2+\log (x)\right ) \log \left (8 e^{-x/4} x\right )\right )} \, dx+\int \left (2+\frac {-1-2 x^2}{x \left (x^2+\log (x)\right )}\right ) \, dx\\ &=2 x+\log \left (\log \left (8 e^{-x/4} x\right )\right )+\frac {1}{4} \int \left (\frac {16}{x \left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )}+\frac {32 x}{\left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )}-\frac {4 x^3}{\left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )}+\frac {x^4}{\left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )}-\frac {8 x \log (x)}{\left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )}+\frac {2 x^2 \log (x)}{\left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )}+\frac {\log ^2(x)}{\left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )}-\frac {4 \log ^2(x)}{x \left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )}\right ) \, dx+\int \frac {-1-2 x^2}{x \left (x^2+\log (x)\right )} \, dx\\ &=2 x-\log \left (x^2+\log (x)\right )+\log \left (\log \left (8 e^{-x/4} x\right )\right )+\frac {1}{4} \int \frac {x^4}{\left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )} \, dx+\frac {1}{4} \int \frac {\log ^2(x)}{\left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )} \, dx+\frac {1}{2} \int \frac {x^2 \log (x)}{\left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )} \, dx-2 \int \frac {x \log (x)}{\left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )} \, dx+4 \int \frac {1}{x \left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )} \, dx+8 \int \frac {x}{\left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )} \, dx-\int \frac {x^3}{\left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )} \, dx-\int \frac {\log ^2(x)}{x \left (x^2+\log (x)\right ) \left (4+x^2 \log \left (8 e^{-x/4} x\right )+\log (x) \log \left (8 e^{-x/4} x\right )\right )} \, dx\\ &=2 x-\log \left (x^2+\log (x)\right )+\log \left (\log \left (8 e^{-x/4} x\right )\right )+\frac {1}{4} \int \frac {x^4}{\left (x^2+\log (x)\right ) \left (4+\left (x^2+\log (x)\right ) \log \left (8 e^{-x/4} x\right )\right )} \, dx+\frac {1}{4} \int \frac {\log ^2(x)}{\left (x^2+\log (x)\right ) \left (4+\left (x^2+\log (x)\right ) \log \left (8 e^{-x/4} x\right )\right )} \, dx+\frac {1}{2} \int \frac {x^2 \log (x)}{\left (x^2+\log (x)\right ) \left (4+\left (x^2+\log (x)\right ) \log \left (8 e^{-x/4} x\right )\right )} \, dx-2 \int \frac {x \log (x)}{\left (x^2+\log (x)\right ) \left (4+\left (x^2+\log (x)\right ) \log \left (8 e^{-x/4} x\right )\right )} \, dx+4 \int \frac {1}{x \left (x^2+\log (x)\right ) \left (4+\left (x^2+\log (x)\right ) \log \left (8 e^{-x/4} x\right )\right )} \, dx+8 \int \frac {x}{\left (x^2+\log (x)\right ) \left (4+\left (x^2+\log (x)\right ) \log \left (8 e^{-x/4} x\right )\right )} \, dx-\int \frac {x^3}{\left (x^2+\log (x)\right ) \left (4+\left (x^2+\log (x)\right ) \log \left (8 e^{-x/4} x\right )\right )} \, dx-\int \frac {\log ^2(x)}{x \left (x^2+\log (x)\right ) \left (4+\left (x^2+\log (x)\right ) \log \left (8 e^{-x/4} x\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.64, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4-x+8 x \log \left (8 e^{-x/4} x\right )+\left (-1-2 x^2+2 x^3+2 x \log (x)\right ) \log ^2\left (8 e^{-x/4} x\right )}{4 x \log \left (8 e^{-x/4} x\right )+\left (x^3+x \log (x)\right ) \log ^2\left (8 e^{-x/4} x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.53, size = 56, normalized size = 1.93 \begin {gather*} 2 \, x - \log \left (-x^{3} + 12 \, x^{2} \log \relax (2) + {\left (4 \, x^{2} - x + 12 \, \log \relax (2)\right )} \log \relax (x) + 4 \, \log \relax (x)^{2} + 16\right ) + \log \left (-x + 12 \, \log \relax (2) + 4 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 58, normalized size = 2.00 \begin {gather*} 2 \, x - \log \left (-x^{3} + 12 \, x^{2} \log \relax (2) + 4 \, x^{2} \log \relax (x) - x \log \relax (x) + 12 \, \log \relax (2) \log \relax (x) + 4 \, \log \relax (x)^{2} + 16\right ) + \log \left (-x + 12 \, \log \relax (2) + 4 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.76, size = 342, normalized size = 11.79
method | result | size |
risch | \(2 x -\ln \left (\ln \relax (x )+x^{2}\right )+\ln \left (\ln \left ({\mathrm e}^{\frac {x}{4}}\right )+\frac {i \left (\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{4}}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-\frac {x}{4}}\right )-\pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-\frac {x}{4}}\right )^{2}-\pi \,\mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{4}}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-\frac {x}{4}}\right )^{2}+\pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-\frac {x}{4}}\right )^{3}+6 i \ln \relax (2)+2 i \ln \relax (x )\right )}{2}\right )-\ln \left (\ln \left ({\mathrm e}^{\frac {x}{4}}\right )+\frac {i \left (\pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{4}}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-\frac {x}{4}}\right )-\pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-\frac {x}{4}}\right )^{2}-\pi \,x^{2} \mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{4}}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-\frac {x}{4}}\right )^{2}+\pi \,x^{2} \mathrm {csgn}\left (i x \,{\mathrm e}^{-\frac {x}{4}}\right )^{3}+\ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{4}}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-\frac {x}{4}}\right )-\ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-\frac {x}{4}}\right )^{2}-\ln \relax (x ) \pi \,\mathrm {csgn}\left (i {\mathrm e}^{-\frac {x}{4}}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{-\frac {x}{4}}\right )^{2}+\ln \relax (x ) \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{-\frac {x}{4}}\right )^{3}+6 i \ln \relax (2) \ln \relax (x )+6 i \ln \relax (2) x^{2}+2 i \ln \relax (x )^{2}+2 i x^{2} \ln \relax (x )+8 i\right )}{2 \ln \relax (x )+2 x^{2}}\right )\) | \(342\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.50, size = 53, normalized size = 1.83 \begin {gather*} 2 \, x - \log \left (-\frac {1}{4} \, x^{3} + 3 \, x^{2} \log \relax (2) + \frac {1}{4} \, {\left (4 \, x^{2} - x + 12 \, \log \relax (2)\right )} \log \relax (x) + \log \relax (x)^{2} + 4\right ) + \log \left (-\frac {1}{4} \, x + 3 \, \log \relax (2) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 14.00, size = 491, normalized size = 16.93 \begin {gather*} 2\,x-\ln \left (\frac {16\,x+4\,x\,{\ln \relax (x)}^2-17\,x^2\,\ln \relax (x)+4\,x^3\,\ln \relax (x)-16\,{\ln \relax (x)}^2-48\,x^2\,\ln \relax (2)+12\,x^3\,\ln \relax (2)-48\,\ln \relax (2)\,\ln \relax (x)+4\,x\,\ln \relax (x)+4\,x^3-x^4+12\,x\,\ln \relax (2)\,\ln \relax (x)-64}{x}\right )+\ln \left (x\,\left (x-4\right )\right )-\ln \left (9\,x^3\,{\ln \relax (2)}^2-36\,x^2\,{\ln \relax (2)}^2-8\,x+3\,x\,\ln \relax (2)+\frac {9\,x\,{\ln \relax (2)}^2}{2}+\frac {45\,x^2\,\ln \relax (2)}{4}+3\,x^3\,\ln \relax (2)+\frac {45\,x^4\,\ln \relax (2)}{2}-6\,x^5\,\ln \relax (2)-18\,{\ln \relax (2)}^2+\frac {515\,x^2}{8}-\frac {287\,x^3}{32}+30\,x^4-\frac {23\,x^5}{16}-\frac {7\,x^6}{2}+x^7+32\right )+\ln \left (\frac {1}{x^2}\right )+\ln \left (32\,x-384\,\ln \relax (2)-128\,\ln \relax (x)-\frac {261\,x^2\,{\ln \relax (2)}^2}{2}+432\,x^2\,{\ln \relax (2)}^3-72\,x^3\,{\ln \relax (2)}^2-108\,x^3\,{\ln \relax (2)}^3-261\,x^4\,{\ln \relax (2)}^2+72\,x^5\,{\ln \relax (2)}^2+72\,{\ln \relax (2)}^2\,\ln \relax (x)-\frac {515\,x^2\,\ln \relax (x)}{2}+\frac {287\,x^3\,\ln \relax (x)}{8}-120\,x^4\,\ln \relax (x)+\frac {23\,x^5\,\ln \relax (x)}{4}+14\,x^6\,\ln \relax (x)-4\,x^7\,\ln \relax (x)+96\,x\,\ln \relax (2)-54\,x\,{\ln \relax (2)}^2-\frac {1539\,x^2\,\ln \relax (2)}{2}-54\,x\,{\ln \relax (2)}^3+\frac {951\,x^3\,\ln \relax (2)}{8}-357\,x^4\,\ln \relax (2)+\frac {159\,x^5\,\ln \relax (2)}{4}+36\,x^6\,\ln \relax (2)-12\,x^7\,\ln \relax (2)+32\,x\,\ln \relax (x)+216\,{\ln \relax (2)}^3-8\,x^2+\frac {515\,x^3}{8}-\frac {287\,x^4}{32}+30\,x^5-\frac {23\,x^6}{16}-\frac {7\,x^7}{2}+x^8-12\,x\,\ln \relax (2)\,\ln \relax (x)-18\,x\,{\ln \relax (2)}^2\,\ln \relax (x)-45\,x^2\,\ln \relax (2)\,\ln \relax (x)-12\,x^3\,\ln \relax (2)\,\ln \relax (x)-90\,x^4\,\ln \relax (2)\,\ln \relax (x)+24\,x^5\,\ln \relax (2)\,\ln \relax (x)+144\,x^2\,{\ln \relax (2)}^2\,\ln \relax (x)-36\,x^3\,{\ln \relax (2)}^2\,\ln \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.29, size = 53, normalized size = 1.83 \begin {gather*} 2 x + \log {\left (- \frac {x}{4} + \log {\relax (x )} + 3 \log {\relax (2 )} \right )} - \log {\left (- \frac {x^{3}}{4} + 3 x^{2} \log {\relax (2 )} + \left (x^{2} - \frac {x}{4} + 3 \log {\relax (2 )}\right ) \log {\relax (x )} + \log {\relax (x )}^{2} + 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________