Optimal. Leaf size=18 \[ \frac {1}{25} \left (-5-e^{\frac {1}{x^8}}-2 x\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.08, antiderivative size = 37, normalized size of antiderivative = 2.06, number of steps used = 5, number of rules used = 4, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.093, Rules used = {12, 14, 2209, 2288} \begin {gather*} \frac {2}{25} e^{\frac {1}{x^8}} (2 x+5)+\frac {e^{\frac {2}{x^8}}}{25}+\frac {1}{25} (2 x+5)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2209
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \frac {-16 e^{\frac {2}{x^8}}+20 x^9+8 x^{10}+e^{\frac {1}{x^8}} \left (-80-32 x+4 x^9\right )}{x^9} \, dx\\ &=\frac {1}{25} \int \left (-\frac {16 e^{\frac {2}{x^8}}}{x^9}+4 (5+2 x)+\frac {4 e^{\frac {1}{x^8}} \left (-20-8 x+x^9\right )}{x^9}\right ) \, dx\\ &=\frac {1}{25} (5+2 x)^2+\frac {4}{25} \int \frac {e^{\frac {1}{x^8}} \left (-20-8 x+x^9\right )}{x^9} \, dx-\frac {16}{25} \int \frac {e^{\frac {2}{x^8}}}{x^9} \, dx\\ &=\frac {e^{\frac {2}{x^8}}}{25}+\frac {2}{25} e^{\frac {1}{x^8}} (5+2 x)+\frac {1}{25} (5+2 x)^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 32, normalized size = 1.78 \begin {gather*} \frac {4}{25} \left (\frac {e^{\frac {2}{x^8}}}{4}+e^{\frac {1}{x^8}} \left (\frac {5}{2}+x\right )+x (5+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 28, normalized size = 1.56 \begin {gather*} \frac {4}{25} \, x^{2} + \frac {2}{25} \, {\left (2 \, x + 5\right )} e^{\left (\frac {1}{x^{8}}\right )} + \frac {4}{5} \, x + \frac {1}{25} \, e^{\left (\frac {2}{x^{8}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.30, size = 30, normalized size = 1.67 \begin {gather*} \frac {4}{25} \, x^{2} + \frac {4}{25} \, x e^{\left (\frac {1}{x^{8}}\right )} + \frac {4}{5} \, x + \frac {1}{25} \, e^{\left (\frac {2}{x^{8}}\right )} + \frac {2}{5} \, e^{\left (\frac {1}{x^{8}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 29, normalized size = 1.61
method | result | size |
risch | \(\frac {4 x^{2}}{25}+\frac {{\mathrm e}^{\frac {2}{x^{8}}}}{25}+\frac {4 x}{5}+\frac {\left (4 x +10\right ) {\mathrm e}^{\frac {1}{x^{8}}}}{25}\) | \(29\) |
norman | \(\frac {\frac {4 x^{9}}{5}+\frac {4 x^{10}}{25}+\frac {2 \,{\mathrm e}^{\frac {1}{x^{8}}} x^{8}}{5}+\frac {4 \,{\mathrm e}^{\frac {1}{x^{8}}} x^{9}}{25}+\frac {{\mathrm e}^{\frac {2}{x^{8}}} x^{8}}{25}}{x^{8}}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.42, size = 59, normalized size = 3.28 \begin {gather*} \frac {1}{50} \, x \left (-\frac {1}{x^{8}}\right )^{\frac {1}{8}} \Gamma \left (-\frac {1}{8}, -\frac {1}{x^{8}}\right ) + \frac {4}{25} \, x^{2} + \frac {4}{5} \, x - \frac {4 \, \Gamma \left (\frac {7}{8}, -\frac {1}{x^{8}}\right )}{25 \, x^{7} \left (-\frac {1}{x^{8}}\right )^{\frac {7}{8}}} + \frac {1}{25} \, e^{\left (\frac {2}{x^{8}}\right )} + \frac {2}{5} \, e^{\left (\frac {1}{x^{8}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.73, size = 30, normalized size = 1.67 \begin {gather*} \frac {4\,x}{5}+\frac {2\,{\mathrm {e}}^{\frac {1}{x^8}}}{5}+\frac {{\mathrm {e}}^{\frac {2}{x^8}}}{25}+\frac {4\,x\,{\mathrm {e}}^{\frac {1}{x^8}}}{25}+\frac {4\,x^2}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.17, size = 32, normalized size = 1.78 \begin {gather*} \frac {4 x^{2}}{25} + \frac {4 x}{5} + \frac {\left (100 x + 250\right ) e^{\frac {1}{x^{8}}}}{625} + \frac {e^{\frac {2}{x^{8}}}}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________