Optimal. Leaf size=20 \[ 3-3 e^{-3+x \left (2+e^{e^4} x\right )} x \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 40, normalized size of antiderivative = 2.00, number of steps used = 1, number of rules used = 1, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {2288} \begin {gather*} -\frac {3 e^{e^{e^4} x^2+2 x-3} \left (e^{e^4} x^2+x\right )}{e^{e^4} x+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {3 e^{-3+2 x+e^{e^4} x^2} \left (x+e^{e^4} x^2\right )}{1+e^{e^4} x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 19, normalized size = 0.95 \begin {gather*} -3 e^{-3+2 x+e^{e^4} x^2} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 17, normalized size = 0.85 \begin {gather*} -3 \, e^{\left (x^{2} e^{\left (e^{4}\right )} + 2 \, x + \log \relax (x) - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 17, normalized size = 0.85 \begin {gather*} -3 \, e^{\left (x^{2} e^{\left (e^{4}\right )} + 2 \, x + \log \relax (x) - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 17, normalized size = 0.85
method | result | size |
risch | \(-3 x \,{\mathrm e}^{x^{2} {\mathrm e}^{{\mathrm e}^{4}}+2 x -3}\) | \(17\) |
norman | \(-3 x \,{\mathrm e}^{-3} {\mathrm e}^{x^{2} {\mathrm e}^{{\mathrm e}^{4}}+2 x}\) | \(20\) |
gosper | \(-3 x \,{\mathrm e}^{-3} {\mathrm e}^{x^{2} {\mathrm e}^{{\mathrm e}^{4}}+2 x}\) | \(24\) |
default | \(\frac {3 i \sqrt {\pi }\, {\mathrm e}^{-3-{\mathrm e}^{-{\mathrm e}^{4}}} {\mathrm e}^{-\frac {{\mathrm e}^{4}}{2}} \erf \left (i {\mathrm e}^{\frac {{\mathrm e}^{4}}{2}} x +i {\mathrm e}^{-\frac {{\mathrm e}^{4}}{2}}\right )}{2}-3 \,{\mathrm e}^{-{\mathrm e}^{4}} {\mathrm e}^{x^{2} {\mathrm e}^{{\mathrm e}^{4}}+2 x -3}-3 i {\mathrm e}^{-\frac {3 \,{\mathrm e}^{4}}{2}} \sqrt {\pi }\, {\mathrm e}^{-3-{\mathrm e}^{-{\mathrm e}^{4}}} \erf \left (i {\mathrm e}^{\frac {{\mathrm e}^{4}}{2}} x +i {\mathrm e}^{-\frac {{\mathrm e}^{4}}{2}}\right )-3 \,{\mathrm e}^{-{\mathrm e}^{4}} x \,{\mathrm e}^{x^{2} {\mathrm e}^{{\mathrm e}^{4}}+2 x -3+{\mathrm e}^{4}}+6 \,{\mathrm e}^{-{\mathrm e}^{4}} \left (\frac {{\mathrm e}^{-{\mathrm e}^{4}} {\mathrm e}^{x^{2} {\mathrm e}^{{\mathrm e}^{4}}+2 x -3+{\mathrm e}^{4}}}{2}+\frac {i {\mathrm e}^{-\frac {3 \,{\mathrm e}^{4}}{2}} \sqrt {\pi }\, {\mathrm e}^{{\mathrm e}^{4}-3-{\mathrm e}^{-{\mathrm e}^{4}}} \erf \left (i {\mathrm e}^{\frac {{\mathrm e}^{4}}{2}} x +i {\mathrm e}^{-\frac {{\mathrm e}^{4}}{2}}\right )}{2}\right )-\frac {3 i {\mathrm e}^{-\frac {3 \,{\mathrm e}^{4}}{2}} \sqrt {\pi }\, {\mathrm e}^{{\mathrm e}^{4}-3-{\mathrm e}^{-{\mathrm e}^{4}}} \erf \left (i {\mathrm e}^{\frac {{\mathrm e}^{4}}{2}} x +i {\mathrm e}^{-\frac {{\mathrm e}^{4}}{2}}\right )}{2}\) | \(239\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.52, size = 285, normalized size = 14.25 \begin {gather*} 3 \, {\left (\frac {{\left (x e^{\left (e^{4}\right )} + 1\right )}^{3} e^{\left (-\frac {5}{2} \, e^{4}\right )} \Gamma \left (\frac {3}{2}, -{\left (x e^{\left (e^{4}\right )} + 1\right )}^{2} e^{\left (-e^{4}\right )}\right )}{\left (-{\left (x e^{\left (e^{4}\right )} + 1\right )}^{2} e^{\left (-e^{4}\right )}\right )^{\frac {3}{2}}} - \frac {\sqrt {\pi } {\left (x e^{\left (e^{4}\right )} + 1\right )} {\left (\operatorname {erf}\left (\sqrt {-{\left (x e^{\left (e^{4}\right )} + 1\right )}^{2} e^{\left (-e^{4}\right )}}\right ) - 1\right )} e^{\left (-\frac {5}{2} \, e^{4}\right )}}{\sqrt {-{\left (x e^{\left (e^{4}\right )} + 1\right )}^{2} e^{\left (-e^{4}\right )}}} + 2 \, e^{\left ({\left (x e^{\left (e^{4}\right )} + 1\right )}^{2} e^{\left (-e^{4}\right )} - \frac {3}{2} \, e^{4}\right )}\right )} e^{\left (\frac {1}{2} \, e^{4} - e^{\left (-e^{4}\right )} - 3\right )} + 3 \, {\left (\frac {\sqrt {\pi } {\left (x e^{\left (e^{4}\right )} + 1\right )} {\left (\operatorname {erf}\left (\sqrt {-{\left (x e^{\left (e^{4}\right )} + 1\right )}^{2} e^{\left (-e^{4}\right )}}\right ) - 1\right )} e^{\left (-\frac {3}{2} \, e^{4}\right )}}{\sqrt {-{\left (x e^{\left (e^{4}\right )} + 1\right )}^{2} e^{\left (-e^{4}\right )}}} - e^{\left ({\left (x e^{\left (e^{4}\right )} + 1\right )}^{2} e^{\left (-e^{4}\right )} - \frac {1}{2} \, e^{4}\right )}\right )} e^{\left (-\frac {1}{2} \, e^{4} - e^{\left (-e^{4}\right )} - 3\right )} - \frac {3 \, \sqrt {\pi } \operatorname {erf}\left (x \sqrt {-e^{\left (e^{4}\right )}} - \frac {1}{\sqrt {-e^{\left (e^{4}\right )}}}\right ) e^{\left (-e^{\left (-e^{4}\right )} - 3\right )}}{2 \, \sqrt {-e^{\left (e^{4}\right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 8.05, size = 17, normalized size = 0.85 \begin {gather*} -3\,x\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{{\mathrm {e}}^4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 1.00 \begin {gather*} - \frac {3 x e^{x^{2} e^{e^{4}} + 2 x}}{e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________