Optimal. Leaf size=28 \[ \log \left (\frac {\left (e^x+\log (5-\log (x))\right )^2}{\left (-5+e^3-x\right ) x^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 5.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10+2 e^3-2 x+e^x \left (-50+e^3 (10-10 x)+35 x+10 x^2\right )+e^x \left (10-7 x-2 x^2+e^3 (-2+2 x)\right ) \log (x)+\left (-50+10 e^3-15 x+\left (10-2 e^3+3 x\right ) \log (x)\right ) \log (5-\log (x))}{e^x \left (25 x-5 e^3 x+5 x^2\right )+e^x \left (-5 x+e^3 x-x^2\right ) \log (x)+\left (25 x-5 e^3 x+5 x^2+\left (-5 x+e^3 x-x^2\right ) \log (x)\right ) \log (5-\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-10 \left (1-\frac {e^3}{5}\right )-2 x+e^x \left (-50+e^3 (10-10 x)+35 x+10 x^2\right )+e^x \left (10-7 x-2 x^2+e^3 (-2+2 x)\right ) \log (x)+\left (-50+10 e^3-15 x+\left (10-2 e^3+3 x\right ) \log (x)\right ) \log (5-\log (x))}{x \left (5-e^3+x\right ) (5-\log (x)) \left (e^x+\log (5-\log (x))\right )} \, dx\\ &=\int \left (\frac {-2 \left (5-e^3\right )+\left (7-2 e^3\right ) x+2 x^2}{x \left (5-e^3+x\right )}-\frac {2 (-1-5 x \log (5-\log (x))+x \log (x) \log (5-\log (x)))}{x (-5+\log (x)) \left (e^x+\log (5-\log (x))\right )}\right ) \, dx\\ &=-\left (2 \int \frac {-1-5 x \log (5-\log (x))+x \log (x) \log (5-\log (x))}{x (-5+\log (x)) \left (e^x+\log (5-\log (x))\right )} \, dx\right )+\int \frac {-2 \left (5-e^3\right )+\left (7-2 e^3\right ) x+2 x^2}{x \left (5-e^3+x\right )} \, dx\\ &=-\left (2 \int \left (-\frac {1}{x (-5+\log (x)) \left (e^x+\log (5-\log (x))\right )}-\frac {5 \log (5-\log (x))}{(-5+\log (x)) \left (e^x+\log (5-\log (x))\right )}+\frac {\log (x) \log (5-\log (x))}{(-5+\log (x)) \left (e^x+\log (5-\log (x))\right )}\right ) \, dx\right )+\int \left (2+\frac {1}{-5+e^3-x}-\frac {2}{x}\right ) \, dx\\ &=2 x-2 \log (x)-\log \left (5-e^3+x\right )+2 \int \frac {1}{x (-5+\log (x)) \left (e^x+\log (5-\log (x))\right )} \, dx-2 \int \frac {\log (x) \log (5-\log (x))}{(-5+\log (x)) \left (e^x+\log (5-\log (x))\right )} \, dx+10 \int \frac {\log (5-\log (x))}{(-5+\log (x)) \left (e^x+\log (5-\log (x))\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 30, normalized size = 1.07 \begin {gather*} -2 \log (x)-\log \left (5-e^3+x\right )+2 \log \left (e^x+\log (5-\log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 28, normalized size = 1.00 \begin {gather*} -\log \left (x - e^{3} + 5\right ) - 2 \, \log \relax (x) + 2 \, \log \left (e^{x} + \log \left (-\log \relax (x) + 5\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 28, normalized size = 1.00 \begin {gather*} -\log \left (x - e^{3} + 5\right ) - 2 \, \log \relax (x) + 2 \, \log \left (e^{x} + \log \left (-\log \relax (x) + 5\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 29, normalized size = 1.04
method | result | size |
risch | \(-2 \ln \relax (x )-\ln \left (-{\mathrm e}^{3}+x +5\right )+2 \ln \left ({\mathrm e}^{x}+\ln \left (5-\ln \relax (x )\right )\right )\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.71, size = 28, normalized size = 1.00 \begin {gather*} -\log \left (x - e^{3} + 5\right ) - 2 \, \log \relax (x) + 2 \, \log \left (e^{x} + \log \left (-\log \relax (x) + 5\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.95, size = 28, normalized size = 1.00 \begin {gather*} 2\,\ln \left (\ln \left (5-\ln \relax (x)\right )+{\mathrm {e}}^x\right )-\ln \left (x-{\mathrm {e}}^3+5\right )-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.93, size = 26, normalized size = 0.93 \begin {gather*} - 2 \log {\relax (x )} + 2 \log {\left (e^{x} + \log {\left (5 - \log {\relax (x )} \right )} \right )} - \log {\left (x - e^{3} + 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________