Optimal. Leaf size=30 \[ \left (-5+e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}}\right ) \log (2) \]
________________________________________________________________________________________
Rubi [F] time = 50.04, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} \left (10 x \log (2)+2 e^x x \log (2)+\left (-10 \log (2)-2 e^x \log (2)\right ) \log (x)+\left ((5-5 x) \log (2)+e^x \left (1-x+x^2\right ) \log (2)-e^x x \log (2) \log (x)\right ) \log \left (25 x^2\right ) \log \left (\log \left (25 x^2\right )\right )\right )}{\left (25 x+10 e^x x+e^{2 x} x\right ) \log \left (25 x^2\right ) \log ^2\left (\log \left (25 x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} \left (10 x \log (2)+2 e^x x \log (2)+\left (-10 \log (2)-2 e^x \log (2)\right ) \log (x)+\left ((5-5 x) \log (2)+e^x \left (1-x+x^2\right ) \log (2)-e^x x \log (2) \log (x)\right ) \log \left (25 x^2\right ) \log \left (\log \left (25 x^2\right )\right )\right )}{\left (5+e^x\right )^2 x \log \left (25 x^2\right ) \log ^2\left (\log \left (25 x^2\right )\right )} \, dx\\ &=\int \left (-\frac {5 e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} \log (2) (x-\log (x))}{\left (5+e^x\right )^2 \log \left (\log \left (25 x^2\right )\right )}+\frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} \log (2) \left (2 x-2 \log (x)+\log \left (25 x^2\right ) \log \left (\log \left (25 x^2\right )\right )-x \log \left (25 x^2\right ) \log \left (\log \left (25 x^2\right )\right )+x^2 \log \left (25 x^2\right ) \log \left (\log \left (25 x^2\right )\right )-x \log (x) \log \left (25 x^2\right ) \log \left (\log \left (25 x^2\right )\right )\right )}{\left (5+e^x\right ) x \log \left (25 x^2\right ) \log ^2\left (\log \left (25 x^2\right )\right )}\right ) \, dx\\ &=\log (2) \int \frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} \left (2 x-2 \log (x)+\log \left (25 x^2\right ) \log \left (\log \left (25 x^2\right )\right )-x \log \left (25 x^2\right ) \log \left (\log \left (25 x^2\right )\right )+x^2 \log \left (25 x^2\right ) \log \left (\log \left (25 x^2\right )\right )-x \log (x) \log \left (25 x^2\right ) \log \left (\log \left (25 x^2\right )\right )\right )}{\left (5+e^x\right ) x \log \left (25 x^2\right ) \log ^2\left (\log \left (25 x^2\right )\right )} \, dx-(5 \log (2)) \int \frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} (x-\log (x))}{\left (5+e^x\right )^2 \log \left (\log \left (25 x^2\right )\right )} \, dx\\ &=\log (2) \int \left (\frac {2 e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}}}{\left (5+e^x\right ) \log \left (25 x^2\right ) \log ^2\left (\log \left (25 x^2\right )\right )}-\frac {2 e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} \log (x)}{\left (5+e^x\right ) x \log \left (25 x^2\right ) \log ^2\left (\log \left (25 x^2\right )\right )}-\frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}}}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}+\frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}}}{\left (5+e^x\right ) x \log \left (\log \left (25 x^2\right )\right )}+\frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} x}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}-\frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} \log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}\right ) \, dx-(5 \log (2)) \int \left (\frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} x}{\left (5+e^x\right )^2 \log \left (\log \left (25 x^2\right )\right )}-\frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} \log (x)}{\left (5+e^x\right )^2 \log \left (\log \left (25 x^2\right )\right )}\right ) \, dx\\ &=-\left (\log (2) \int \frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}}}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )} \, dx\right )+\log (2) \int \frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}}}{\left (5+e^x\right ) x \log \left (\log \left (25 x^2\right )\right )} \, dx+\log (2) \int \frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} x}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )} \, dx-\log (2) \int \frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} \log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )} \, dx+(2 \log (2)) \int \frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}}}{\left (5+e^x\right ) \log \left (25 x^2\right ) \log ^2\left (\log \left (25 x^2\right )\right )} \, dx-(2 \log (2)) \int \frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} \log (x)}{\left (5+e^x\right ) x \log \left (25 x^2\right ) \log ^2\left (\log \left (25 x^2\right )\right )} \, dx-(5 \log (2)) \int \frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} x}{\left (5+e^x\right )^2 \log \left (\log \left (25 x^2\right )\right )} \, dx+(5 \log (2)) \int \frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} \log (x)}{\left (5+e^x\right )^2 \log \left (\log \left (25 x^2\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.96, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {-x+\log (x)}{\left (5+e^x\right ) \log \left (\log \left (25 x^2\right )\right )}} \left (10 x \log (2)+2 e^x x \log (2)+\left (-10 \log (2)-2 e^x \log (2)\right ) \log (x)+\left ((5-5 x) \log (2)+e^x \left (1-x+x^2\right ) \log (2)-e^x x \log (2) \log (x)\right ) \log \left (25 x^2\right ) \log \left (\log \left (25 x^2\right )\right )\right )}{\left (25 x+10 e^x x+e^{2 x} x\right ) \log \left (25 x^2\right ) \log ^2\left (\log \left (25 x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 30, normalized size = 1.00 \begin {gather*} e^{\left (-\frac {x - \log \relax (x)}{{\left (e^{x} + 5\right )} \log \left (2 \, \log \relax (5) + 2 \, \log \relax (x)\right )}\right )} \log \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.30, size = 58, normalized size = 1.93
method | result | size |
risch | \(\ln \relax (2) {\mathrm e}^{\frac {\ln \relax (x )-x}{\left ({\mathrm e}^{x}+5\right ) \ln \left (2 \ln \relax (5)+2 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}\right )}}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.03, size = 53, normalized size = 1.77 \begin {gather*} x^{\frac {1}{5\,\ln \left (\ln \left (25\,x^2\right )\right )+\ln \left (\ln \left (25\,x^2\right )\right )\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{-\frac {x}{5\,\ln \left (\ln \left (25\,x^2\right )\right )+\ln \left (\ln \left (25\,x^2\right )\right )\,{\mathrm {e}}^x}}\,\ln \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 56.47, size = 24, normalized size = 0.80 \begin {gather*} e^{\frac {- x + \log {\relax (x )}}{\left (e^{x} + 5\right ) \log {\left (2 \log {\relax (x )} + \log {\left (25 \right )} \right )}}} \log {\relax (2 )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________