Optimal. Leaf size=22 \[ \frac {25+x}{-5 x^2+\frac {1}{6} e^5 (3+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 23, normalized size of antiderivative = 1.05, number of steps used = 4, number of rules used = 4, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {1680, 12, 1814, 8} \begin {gather*} \frac {6 (x+25)}{-30 x^2+e^5 x+3 e^5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {720 \left (e^5 \left (360+e^5\right )+120 \left (1500+e^5\right ) x+3600 x^2\right )}{\left (360 e^5+e^{10}-3600 x^2\right )^2} \, dx,x,-\frac {e^5}{60}+x\right )\\ &=720 \operatorname {Subst}\left (\int \frac {e^5 \left (360+e^5\right )+120 \left (1500+e^5\right ) x+3600 x^2}{\left (360 e^5+e^{10}-3600 x^2\right )^2} \, dx,x,-\frac {e^5}{60}+x\right )\\ &=\frac {6 (25+x)}{3 e^5+e^5 x-30 x^2}-\frac {360 \operatorname {Subst}\left (\int 0 \, dx,x,-\frac {e^5}{60}+x\right )}{e^5 \left (360+e^5\right )}\\ &=\frac {6 (25+x)}{3 e^5+e^5 x-30 x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 20, normalized size = 0.91 \begin {gather*} \frac {6 (25+x)}{-30 x^2+e^5 (3+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 20, normalized size = 0.91 \begin {gather*} -\frac {6 \, {\left (x + 25\right )}}{30 \, x^{2} - {\left (x + 3\right )} e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 13, normalized size = 0.59 \begin {gather*} 2.02587824616667 \times 10^{13} \, \log \left (x + 2.10463242876030\right ) + 11344289279736 \, \log \left (x - 7.05173773218000\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 22, normalized size = 1.00
method | result | size |
gosper | \(\frac {6 x +150}{x \,{\mathrm e}^{5}-30 x^{2}+3 \,{\mathrm e}^{5}}\) | \(22\) |
norman | \(\frac {6 x +150}{x \,{\mathrm e}^{5}-30 x^{2}+3 \,{\mathrm e}^{5}}\) | \(23\) |
risch | \(\frac {6 x +150}{x \,{\mathrm e}^{5}-30 x^{2}+3 \,{\mathrm e}^{5}}\) | \(23\) |
default | \(-6 \left (\munderset {\textit {\_R} =\RootOf \left (900 \textit {\_Z}^{4}-60 \textit {\_Z}^{3} {\mathrm e}^{5}+\left (-180 \,{\mathrm e}^{5}+{\mathrm e}^{10}\right ) \textit {\_Z}^{2}+6 \textit {\_Z} \,{\mathrm e}^{10}+9 \,{\mathrm e}^{10}\right )}{\sum }\frac {\left (-11 \,{\mathrm e}^{5}+15 \textit {\_R}^{2}+750 \textit {\_R} \right ) \ln \left (x -\textit {\_R} \right )}{90 \textit {\_R}^{2} {\mathrm e}^{5}-1800 \textit {\_R}^{3}+180 \textit {\_R} \,{\mathrm e}^{5}-\textit {\_R} \,{\mathrm e}^{10}-3 \,{\mathrm e}^{10}}\right )\) | \(89\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 22, normalized size = 1.00 \begin {gather*} -\frac {6 \, {\left (x + 25\right )}}{30 \, x^{2} - x e^{5} - 3 \, e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 9.27, size = 22, normalized size = 1.00 \begin {gather*} \frac {6\,x+150}{-30\,x^2+{\mathrm {e}}^5\,x+3\,{\mathrm {e}}^5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 20, normalized size = 0.91 \begin {gather*} \frac {- 6 x - 150}{30 x^{2} - x e^{5} - 3 e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________